Cmr √a/√a – √b – √b/ √a + √b -2b/a-b =1 (a ≥0, b ≥0 và a khác b)
0 bình luận về “Cmr √a/√a – √b – √b/ √a + √b -2b/a-b =1 (a ≥0, b ≥0 và a khác b)”
Đáp án:
$\begin{array}{l} a \ge 0;b \ge 0;a \ne b\\ \dfrac{{\sqrt a }}{{\sqrt a – \sqrt b }} – \dfrac{{\sqrt b }}{{\sqrt a + \sqrt b }} – \dfrac{{2b}}{{a – b}}\\ = \dfrac{{\sqrt a \left( {\sqrt a + \sqrt b } \right) – \sqrt b \left( {\sqrt a – \sqrt b } \right) – 2b}}{{\left( {\sqrt a + \sqrt b } \right)\left( {\sqrt a – \sqrt b } \right)}}\\ = \dfrac{{a + \sqrt {ab} – \sqrt {ab} + b – 2b}}{{\left( {\sqrt a + \sqrt b } \right)\left( {\sqrt a – \sqrt b } \right)}}\\ = \dfrac{{a – b}}{{\left( {\sqrt a + \sqrt b } \right)\left( {\sqrt a – \sqrt b } \right)}}\\ = \dfrac{{\left( {\sqrt a + \sqrt b } \right)\left( {\sqrt a – \sqrt b } \right)}}{{\left( {\sqrt a + \sqrt b } \right)\left( {\sqrt a – \sqrt b } \right)}}\\ = 1\\ Vay\,\dfrac{{\sqrt a }}{{\sqrt a – \sqrt b }} – \dfrac{{\sqrt b }}{{\sqrt a + \sqrt b }} – \dfrac{{2b}}{{a – b}} = 1 \end{array}$
Đáp án:
$\begin{array}{l}
a \ge 0;b \ge 0;a \ne b\\
\dfrac{{\sqrt a }}{{\sqrt a – \sqrt b }} – \dfrac{{\sqrt b }}{{\sqrt a + \sqrt b }} – \dfrac{{2b}}{{a – b}}\\
= \dfrac{{\sqrt a \left( {\sqrt a + \sqrt b } \right) – \sqrt b \left( {\sqrt a – \sqrt b } \right) – 2b}}{{\left( {\sqrt a + \sqrt b } \right)\left( {\sqrt a – \sqrt b } \right)}}\\
= \dfrac{{a + \sqrt {ab} – \sqrt {ab} + b – 2b}}{{\left( {\sqrt a + \sqrt b } \right)\left( {\sqrt a – \sqrt b } \right)}}\\
= \dfrac{{a – b}}{{\left( {\sqrt a + \sqrt b } \right)\left( {\sqrt a – \sqrt b } \right)}}\\
= \dfrac{{\left( {\sqrt a + \sqrt b } \right)\left( {\sqrt a – \sqrt b } \right)}}{{\left( {\sqrt a + \sqrt b } \right)\left( {\sqrt a – \sqrt b } \right)}}\\
= 1\\
Vay\,\dfrac{{\sqrt a }}{{\sqrt a – \sqrt b }} – \dfrac{{\sqrt b }}{{\sqrt a + \sqrt b }} – \dfrac{{2b}}{{a – b}} = 1
\end{array}$
Đáp án:
Vậy $\dfrac{\sqrt a}{\sqrt a-\sqrt b}-$$\dfrac{\sqrt b}{\sqrt a+\sqrt b}-$ $\dfrac{2b}{a-b}=1$
Giải thích các bước giải:
Với `a≥0;b≥0;a\ne b`
Ta có:
$\dfrac{\sqrt a}{\sqrt a-\sqrt b}-$$\dfrac{\sqrt b}{\sqrt a+\sqrt b}-$ $\dfrac{2b}{a-b}$
$=\dfrac{\sqrt a(\sqrt a+\sqrt b)}{(\sqrt a-\sqrt b)(\sqrt a+\sqrt b)}-$$\dfrac{\sqrt b(\sqrt a-\sqrt b)}{(\sqrt a+\sqrt b)(\sqrt a-\sqrt b)}-$ $\dfrac{2b}{(\sqrt a+\sqrt b)(\sqrt a-\sqrt b)}$
$=\dfrac{a+\sqrt {ab} -\sqrt {ab}+b-2b}{(\sqrt a+\sqrt b)(\sqrt a-\sqrt b)}$
$=\dfrac{a-b}{(\sqrt a+\sqrt b)(\sqrt a-\sqrt b)}$
$=\dfrac{(\sqrt a+\sqrt b)(\sqrt a-\sqrt b)}{(\sqrt a+\sqrt b)(\sqrt a-\sqrt b)}=1$