CMR a) cot ² a – cos ² a = cot ² a . cos ² a b) $\frac{1 + cos a }{sin a}$ = $\frac{sin a}{1 – cos a}$

CMR
a) cot ² a – cos ² a = cot ² a . cos ² a
b) $\frac{1 + cos a }{sin a}$ = $\frac{sin a}{1 – cos a}$

0 bình luận về “CMR a) cot ² a – cos ² a = cot ² a . cos ² a b) $\frac{1 + cos a }{sin a}$ = $\frac{sin a}{1 – cos a}$”

  1. a) $\cot^2a – \cos^2a$

    $= \dfrac{\cos^2a}{\sin^2a} – \cos^2a$

    $= \dfrac{\cos^2a – \sin^2a.\cos^2a}{\sin^2a}$

    $= \dfrac{\cos^2a(1 – \sin^2a)}{\sin^2a}$

    $= \dfrac{\cos^2a.\cos^2a}{\sin^2a}$

    $= \cot^2a.\cos^2a$

    b) $\dfrac{1 + \cos a}{\sin a} = \dfrac{\sin a}{1 – \cos a}$

    $\to (1 + \cos a)(1 – \cos a) = \sin^2a$

    $\to 1 – \cos^2a = \sin^2a$

    $\to \sin^2a = \sin^2a$ (hiển nhiên)

    Vậy $\dfrac{1 + \cos a}{\sin a} = \dfrac{\sin a}{1 – \cos a}$

    Bình luận
  2. a,

    $VT=\cot^2a-\cos^2a$

    $=\dfrac{\cos^2a}{\sin^2a}-\cos^2a$

    $=\dfrac{\cos^2a-\sin^2a\cos^2a}{\sin^2a}$

    $=\dfrac{\cos^2a(1-\sin^2a)}{\sin^2a}$

    $=\dfrac{\cos^2a.\cos^2a}{\sin^2a}$

    $=\cot^2a.\cos^2a$

    $=VP$

    b,

    $VT=\dfrac{1+\cos a}{\sin a}$

    $=\dfrac{(1+\cos a)(1-\cos a)}{\sin a(1-\cos a)}$

    $=\dfrac{1-\cos^2a}{\sin a(1-\cos a)}$

    $=\dfrac{\sin^2a}{\sin a(1-\cos a)}$

    $=\dfrac{\sin a}{1-\cos a}$

    $=VP$

    Bình luận

Viết một bình luận