CMR : `C =1/5 + 1/5^2 + 1/5^3 + … + 1/5^2017 < 1/4`

CMR : `C =1/5 + 1/5^2 + 1/5^3 + … + 1/5^2017 < 1/4`

0 bình luận về “CMR : `C =1/5 + 1/5^2 + 1/5^3 + … + 1/5^2017 < 1/4`”

  1. Đáp án:

    `C = 1/5 + 1/5^2 + 1/5^3 + … + 1/5^{2017}`

    `-> 1/5C = 1/5^2 + 1/5^3 + … + 1/5^{2018}`

    `->C – 1/5C = (1/5 + 1/5^2 + 1/5^3 + … + 1/5^{2017}) – (1/5^2 + 1/5^3 + … + 1/5^{2018})`

    `-> 4/5C = 1/5 – 1/5^{2018}`

    `-> C = 1/4 – 1/(5^{2017} . 4)`

    `text{Ta thấy :}` `1/4 – 1/(5^{2017} . 4) < 1/4`

    `-> C < 1/4 (đpcm)`

     

    Bình luận
  2. `C=1/5 + 1/5^2 + 1/5^3 +…+1/5^2017`

    `1/5 C= 1/5 ( 1/5 +1/5^2 + 1/5^3+…+1/5^2017)`

    `1/5C = 1/5^2 + 1/5^3 + 1/5^4 +…+ 1/5^2018`

    `C- 1/5 C= 1/5 + 1/5^2 + 1/5^3 +…+1/5^2017 – 1/5^2 – 1/5^3 – 1/5^4-..-1/5^2018`

    `4/5 C = 1/5 – 1/5^2018`

    `C= (1/5 – 1/5^2018):4/5`

    `C= (1/5- 1/5^2018) . 5/4`

    `C = 1/4 – 1/(5^2017 .4) < 1/4`

    Vậy `C < 1/4`

     

    Bình luận

Viết một bình luận