CMR : S=1/2^2-1/2^4+1/2^6-…+1/2^4n-2-1/4n+…+1/2^2002-1/2^2004 <0,2 MN giúp em nhanh nhá :3333 31/10/2021 Bởi Adalynn CMR : S=1/2^2-1/2^4+1/2^6-…+1/2^4n-2-1/4n+…+1/2^2002-1/2^2004 <0,2 MN giúp em nhanh nhá :3333
Đáp án: $\begin{array}{l}S = \dfrac{1}{{{2^2}}} – \dfrac{1}{{{2^4}}} + \dfrac{1}{{{2^6}}} – … + \\ + \dfrac{1}{{{2^{4n – 2}}}} – \dfrac{1}{{{2^{4n}}}} + … + \dfrac{1}{{{2^{2002}}}} – \dfrac{1}{{{2^{2004}}}}\\ \Rightarrow {2^2}.S = 1 – \dfrac{1}{{{2^2}}} + \dfrac{1}{{{2^4}}} + … + \dfrac{1}{{{2^{4n}}}} + …\\ + \dfrac{1}{{{2^{2000}}}} – \dfrac{1}{{{2^{2002}}}}\\ \Rightarrow 4S + S = 5S = 1 – \dfrac{1}{{{2^{2004}}}}\\ \Rightarrow S = \dfrac{1}{5} – \dfrac{1}{{{{5.2}^{2004}}}} < \dfrac{1}{5}\\ \Rightarrow S < 0,2\end{array}$ Vậy S<0,2 Bình luận
Đáp án:
$\begin{array}{l}
S = \dfrac{1}{{{2^2}}} – \dfrac{1}{{{2^4}}} + \dfrac{1}{{{2^6}}} – … + \\
+ \dfrac{1}{{{2^{4n – 2}}}} – \dfrac{1}{{{2^{4n}}}} + … + \dfrac{1}{{{2^{2002}}}} – \dfrac{1}{{{2^{2004}}}}\\
\Rightarrow {2^2}.S = 1 – \dfrac{1}{{{2^2}}} + \dfrac{1}{{{2^4}}} + … + \dfrac{1}{{{2^{4n}}}} + …\\
+ \dfrac{1}{{{2^{2000}}}} – \dfrac{1}{{{2^{2002}}}}\\
\Rightarrow 4S + S = 5S = 1 – \dfrac{1}{{{2^{2004}}}}\\
\Rightarrow S = \dfrac{1}{5} – \dfrac{1}{{{{5.2}^{2004}}}} < \dfrac{1}{5}\\
\Rightarrow S < 0,2
\end{array}$
Vậy S<0,2