CMR: Với (a + b + c + d).(a – b – c + d) = (a – b + c – d).(a + b – c – d) thì $\frac{a}{c}$ = $\frac{b}{d}$

CMR: Với (a + b + c + d).(a – b – c + d) = (a – b + c – d).(a + b – c – d) thì $\frac{a}{c}$ = $\frac{b}{d}$

0 bình luận về “CMR: Với (a + b + c + d).(a – b – c + d) = (a – b + c – d).(a + b – c – d) thì $\frac{a}{c}$ = $\frac{b}{d}$”

  1. (a+b+c+d)(abc+d)=(ab+cd)(a+bcd)

    [(a+d)+(b+c)][(a+d)(b+c)]=[(ad)(bc)][(ad)+(bc)](a+d)2(b+c)2=(ad)2(bc)2

    a2+2ad+d2b22bcc2=a22ad+d2b2+2bcc2

    2ad2bc=2ad+2bc4ad=4bcad=bcac=bdpcm).

    Bình luận
  2. \(\begin{array}{l}
    \left( {a + b + c + d} \right)\left( {a – b – c + d} \right) = \left( {a – b + c – d} \right)\left( {a + b – c – d} \right)\\
     \Leftrightarrow \left[ {\left( {a + d} \right) + \left( {b + c} \right)} \right]\left[ {\left( {a + d} \right) – \left( {b + c} \right)} \right] = \left[ {\left( {a – d} \right) – \left( {b – c} \right)} \right]\left[ {\left( {a – d} \right) + \left( {b – c} \right)} \right]\\
     \Leftrightarrow {\left( {a + d} \right)^2} – {\left( {b + c} \right)^2} = {\left( {a – d} \right)^2} – {\left( {b – c} \right)^2}\\
     \Leftrightarrow {a^2} + 2ad + {d^2} – {b^2} – 2bc – {c^2} = {a^2} – 2ad + {d^2} – {b^2} + 2bc – {c^2}\\
     \Leftrightarrow 2ad – 2bc =  – 2ad + 2bc\\
     \Leftrightarrow 4ad = 4bc\\
     \Leftrightarrow ad = bc\\
     \Leftrightarrow \frac{a}{c} = \frac{b}{d}\,\,\,\left( {dpcm} \right).
    \end{array}\)

     

    Bình luận

Viết một bình luận