cos ² (π /3 +x) +4.cos .(π/6 – x ) = 4 . help meee

cos ² (π /3 +x) +4.cos .(π/6 – x ) = 4 . help meee

0 bình luận về “cos ² (π /3 +x) +4.cos .(π/6 – x ) = 4 . help meee”

  1. Đáp án:

    \[x = \dfrac{\pi }{6} + k2\pi \,\,\,\,\,\left( {k \in Z} \right)\]

    Giải thích các bước giải:

     Ta có:

    \(\begin{array}{l}
    \cos x = \sin \left( {\dfrac{\pi }{2} – x} \right)\\
    {\sin ^2}x + {\cos ^2}x = 1\\
    {\cos ^2}\left( {\dfrac{\pi }{3} + x} \right) + 4\cos \left( {\dfrac{\pi }{6} – x} \right) = 4\\
     \Leftrightarrow {\sin ^2}\left[ {\dfrac{\pi }{2} – \left( {\dfrac{\pi }{3} + x} \right)} \right] + 4\cos \left( {\dfrac{\pi }{6} – x} \right) = 4\\
     \Leftrightarrow {\sin ^2}\left( {\dfrac{\pi }{6} – x} \right) + 4\cos \left( {\dfrac{\pi }{6} – x} \right) = 4\\
     \Leftrightarrow \left[ {1 – {{\cos }^2}\left( {\dfrac{\pi }{6} – x} \right)} \right] + 4\cos \left( {\dfrac{\pi }{6} – x} \right) = 4\\
     \Leftrightarrow {\cos ^2}\left( {\dfrac{\pi }{6} – x} \right) – 4\cos \left( {\dfrac{\pi }{6} – x} \right) + 3 = 0\\
     \Leftrightarrow \left( {\cos \left( {\dfrac{\pi }{6} – x} \right) – 1} \right)\left( {\cos \left( {\dfrac{\pi }{6} – x} \right) – 3} \right) = 0\\
     \Leftrightarrow \left[ \begin{array}{l}
    \cos \left( {\dfrac{\pi }{6} – x} \right) = 1\\
    \cos \left( {\dfrac{\pi }{6} – x} \right) = 3\,\,\,\,\,\,\,\,\,\,\,\left( {L,\,\,\, – 1 \le \cos x \le 1} \right)
    \end{array} \right.\\
     \Leftrightarrow \cos \left( {\dfrac{\pi }{6} – x} \right) = 1\\
     \Leftrightarrow \dfrac{\pi }{6} – x = k2\pi \\
     \Leftrightarrow x = \dfrac{\pi }{6} + k2\pi \,\,\,\,\,\left( {k \in Z} \right)
    \end{array}\)

    Bình luận

Viết một bình luận