cos(pi/17)*cos(2 pi/17)*cos(4pi/17)*cos(8pi/17)=?

cos(pi/17)*cos(2 pi/17)*cos(4pi/17)*cos(8pi/17)=?

0 bình luận về “cos(pi/17)*cos(2 pi/17)*cos(4pi/17)*cos(8pi/17)=?”

  1. Đáp án:

    \[A = \dfrac{1}{{16}}\]

    Giải thích các bước giải:

     Ta có:

    \(\begin{array}{l}
    \sin 2x = 2\sin x.\cos x\\
    A = \cos \dfrac{\pi }{{17}}.\cos \dfrac{{2\pi }}{{17}}.\cos \dfrac{{4\pi }}{{17}}.\cos \dfrac{{8\pi }}{{17}}\\
     \Leftrightarrow \sin \dfrac{\pi }{{17}}.A = \sin \dfrac{\pi }{{17}}.\cos \dfrac{\pi }{{17}}.\cos \dfrac{{2\pi }}{{17}}.\cos \dfrac{{4\pi }}{{17}}.\cos \dfrac{{8\pi }}{{17}}\\
     \Leftrightarrow \sin \dfrac{\pi }{{17}}.A = \dfrac{1}{2}.\left( {2\sin \dfrac{\pi }{{17}}.\cos \dfrac{\pi }{{17}}} \right).\cos \dfrac{{2\pi }}{{17}}.\cos \dfrac{{4\pi }}{{17}}.\cos \dfrac{{8\pi }}{{17}}\\
     \Leftrightarrow \sin \dfrac{\pi }{{17}}.A = \dfrac{1}{2}.\sin \dfrac{{2\pi }}{{17}}.\cos \dfrac{{2\pi }}{{17}}.\cos \dfrac{{4\pi }}{{17}}.\cos \dfrac{{8\pi }}{{17}}\\
     \Leftrightarrow \sin \dfrac{\pi }{{17}}.A = \dfrac{1}{2}.\dfrac{1}{2}.\sin \dfrac{{4\pi }}{{17}}.\cos \dfrac{{4\pi }}{{17}}.\cos \dfrac{{8\pi }}{{17}}\\
     \Leftrightarrow \sin \dfrac{\pi }{{17}}.A = \dfrac{1}{2}.\dfrac{1}{2}.\dfrac{1}{2}.sin\dfrac{{8\pi }}{{17}}.\cos \dfrac{{8\pi }}{{17}}\\
     \Leftrightarrow \sin \dfrac{\pi }{{17}}.A = \dfrac{1}{2}.\dfrac{1}{2}.\dfrac{1}{2}.\dfrac{1}{2}.\sin \dfrac{{16\pi }}{{17}}\\
     \Leftrightarrow \sin \dfrac{\pi }{{17}}.A = \dfrac{1}{{16}}.\sin \dfrac{{16\pi }}{{17}}\\
     \Leftrightarrow \sin \dfrac{\pi }{{17}}.A = \dfrac{1}{{16}}.\sin \left( {\pi  – \dfrac{{16\pi }}{{17}}} \right)\\
     \Leftrightarrow \sin \dfrac{\pi }{{17}}.A = \dfrac{1}{{16}}.\sin \dfrac{\pi }{{17}}\\
     \Leftrightarrow A = \dfrac{1}{{16}}
    \end{array}\)

    Bình luận

Viết một bình luận