cos⁶x-sin⁶x=1/4cos2x(4-sin²2x) cm 2 vế bằng nhau 17/10/2021 Bởi Savannah cos⁶x-sin⁶x=1/4cos2x(4-sin²2x) cm 2 vế bằng nhau
$VT=\cos^6x-\sin^6x$ $=(\sin^2x-\cos^2x)(\sin^4x+\sin^2x\cos^2x+\cos^4x)$ $=-\cos 2x[(\sin^2x+\cos^2x)^2-\sin^2xcos^2x]$ $=-\cos 2x(1-\sin^2x\cos^2x)$ $=-\cos 2x(1-\dfrac{1}{4}\sin^22x)$ $=-\dfrac{1}{4}\cos 2x(4-\sin^22x)$ Bình luận
Giải thích các bước giải: $VT=\cos^6x-\sin^6x\\=(\cos^3x)^2-(\sin^3x)^2\\=(\cos^3x+\sin^3x)(\cos^3x-\sin^3x)\\=(\cos x+\sin x)(\sin^2x-\sin x\cos x+\cos^2x)(\cos x-\sin x)(\cos^2x +\sin x\cos x+\sin^2 x)\\=(\cos x+\sin x)(1-\sin x\cos x)(\cos x-\sin x)(1 +\sin x\cos x)\\=\cos2x(1-\sin^2x\cos^2x)\\=\cos2x\left ( 1-\dfrac{1}{4}\sin^22x \right )\\=\dfrac{1}{4}\cos2x(4-\sin^2x)=VP\Rightarrow ĐPCM$ Bình luận
$VT=\cos^6x-\sin^6x$
$=(\sin^2x-\cos^2x)(\sin^4x+\sin^2x\cos^2x+\cos^4x)$
$=-\cos 2x[(\sin^2x+\cos^2x)^2-\sin^2xcos^2x]$
$=-\cos 2x(1-\sin^2x\cos^2x)$
$=-\cos 2x(1-\dfrac{1}{4}\sin^22x)$
$=-\dfrac{1}{4}\cos 2x(4-\sin^22x)$
Giải thích các bước giải:
$VT=\cos^6x-\sin^6x\\
=(\cos^3x)^2-(\sin^3x)^2\\
=(\cos^3x+\sin^3x)(\cos^3x-\sin^3x)\\
=(\cos x+\sin x)(\sin^2x-\sin x\cos x+\cos^2x)(\cos x-\sin x)(\cos^2x +\sin x\cos x+\sin^2 x)\\
=(\cos x+\sin x)(1-\sin x\cos x)(\cos x-\sin x)(1 +\sin x\cos x)\\
=\cos2x(1-\sin^2x\cos^2x)\\
=\cos2x\left ( 1-\dfrac{1}{4}\sin^22x \right )\\
=\dfrac{1}{4}\cos2x(4-\sin^2x)=VP\Rightarrow ĐPCM$