Cos4x – sin2x = 0 Tan4x = tan2x Cos4x = sin2x Sin^2(3x) = 0 Cot(3x+1) = tan(x – pi/2) 22/07/2021 Bởi Eloise Cos4x – sin2x = 0 Tan4x = tan2x Cos4x = sin2x Sin^2(3x) = 0 Cot(3x+1) = tan(x – pi/2)
Đáp án: $\begin{array}{l}a)\cos 4x – \sin 2x = 0\\ \Rightarrow 1 – 2{\sin ^2}2x – \sin 2x = 0\\ \Rightarrow 2{\sin ^2}2x + \sin 2x – 1 = 0\\ \Rightarrow \left( {2\sin 2x – 1} \right)\left( {\sin 2x + 1} \right) = 0\\ \Rightarrow \left[ \begin{array}{l}\sin 2x = \dfrac{1}{2}\\\sin 2x = – 1\end{array} \right.\\ \Rightarrow \left[ \begin{array}{l}2x = \dfrac{\pi }{6} + k2\pi \\2x = \dfrac{{5\pi }}{6} + k2\pi \\2x = \dfrac{{ – \pi }}{2} + k2\pi \end{array} \right. \Rightarrow \left[ \begin{array}{l}x = \dfrac{\pi }{{12}} + k\pi \\x = \dfrac{{5\pi }}{{12}} + k\pi \\x = – \dfrac{\pi }{4} + k\pi \end{array} \right.\\b)\\\tan 4x = \tan 2x\\ \Rightarrow 4x = 2x + k\pi \\ \Rightarrow 2x = k\pi \\ \Rightarrow x = \dfrac{{k\pi }}{2}\\c)\cos 4x = \sin 2x\\ \Rightarrow \sin \left( {\dfrac{\pi }{2} – 4x} \right) = \sin 2x\\ \Rightarrow \left[ \begin{array}{l}\dfrac{\pi }{2} – 4x = 2x + k2\pi \\\dfrac{\pi }{2} – 4x = \pi – 2x + k2\pi \end{array} \right.\\ \Rightarrow \left[ \begin{array}{l}x = \dfrac{\pi }{{12}} – \dfrac{{k\pi }}{3}\\x = – \dfrac{\pi }{4} – k\pi \end{array} \right.\\d){\sin ^2}3x = 0\\ \Rightarrow \sin 3x = 0\\ \Rightarrow 3x = k\pi \\x = \dfrac{{k\pi }}{3}\\e)\cot \left( {3x + 1} \right) = \tan \left( {x – \dfrac{\pi }{2}} \right)\\ \Rightarrow \tan \left( {\dfrac{\pi }{2} – 3x – 1} \right) = \tan \left( {x – \dfrac{\pi }{2}} \right)\\ \Rightarrow \dfrac{\pi }{2} – 3x – 1 = x – \dfrac{\pi }{2} + k\pi \\ \Rightarrow x = \dfrac{\pi }{4} – \dfrac{1}{4} – \dfrac{\pi }{4}\end{array}$ Bình luận
Đáp án:
$\begin{array}{l}
a)\cos 4x – \sin 2x = 0\\
\Rightarrow 1 – 2{\sin ^2}2x – \sin 2x = 0\\
\Rightarrow 2{\sin ^2}2x + \sin 2x – 1 = 0\\
\Rightarrow \left( {2\sin 2x – 1} \right)\left( {\sin 2x + 1} \right) = 0\\
\Rightarrow \left[ \begin{array}{l}
\sin 2x = \dfrac{1}{2}\\
\sin 2x = – 1
\end{array} \right.\\
\Rightarrow \left[ \begin{array}{l}
2x = \dfrac{\pi }{6} + k2\pi \\
2x = \dfrac{{5\pi }}{6} + k2\pi \\
2x = \dfrac{{ – \pi }}{2} + k2\pi
\end{array} \right. \Rightarrow \left[ \begin{array}{l}
x = \dfrac{\pi }{{12}} + k\pi \\
x = \dfrac{{5\pi }}{{12}} + k\pi \\
x = – \dfrac{\pi }{4} + k\pi
\end{array} \right.\\
b)\\
\tan 4x = \tan 2x\\
\Rightarrow 4x = 2x + k\pi \\
\Rightarrow 2x = k\pi \\
\Rightarrow x = \dfrac{{k\pi }}{2}\\
c)\cos 4x = \sin 2x\\
\Rightarrow \sin \left( {\dfrac{\pi }{2} – 4x} \right) = \sin 2x\\
\Rightarrow \left[ \begin{array}{l}
\dfrac{\pi }{2} – 4x = 2x + k2\pi \\
\dfrac{\pi }{2} – 4x = \pi – 2x + k2\pi
\end{array} \right.\\
\Rightarrow \left[ \begin{array}{l}
x = \dfrac{\pi }{{12}} – \dfrac{{k\pi }}{3}\\
x = – \dfrac{\pi }{4} – k\pi
\end{array} \right.\\
d){\sin ^2}3x = 0\\
\Rightarrow \sin 3x = 0\\
\Rightarrow 3x = k\pi \\
x = \dfrac{{k\pi }}{3}\\
e)\cot \left( {3x + 1} \right) = \tan \left( {x – \dfrac{\pi }{2}} \right)\\
\Rightarrow \tan \left( {\dfrac{\pi }{2} – 3x – 1} \right) = \tan \left( {x – \dfrac{\pi }{2}} \right)\\
\Rightarrow \dfrac{\pi }{2} – 3x – 1 = x – \dfrac{\pi }{2} + k\pi \\
\Rightarrow x = \dfrac{\pi }{4} – \dfrac{1}{4} – \dfrac{\pi }{4}
\end{array}$