Cos4x – sin2x = 0 Tan4x = tan2x Cos4x = sin2x Sin^2(3x) = 0 Cot(3x+1) = tan(x – pi/2)

Cos4x – sin2x = 0
Tan4x = tan2x
Cos4x = sin2x
Sin^2(3x) = 0
Cot(3x+1) = tan(x – pi/2)

0 bình luận về “Cos4x – sin2x = 0 Tan4x = tan2x Cos4x = sin2x Sin^2(3x) = 0 Cot(3x+1) = tan(x – pi/2)”

  1. Đáp án:

    $\begin{array}{l}
    a)\cos 4x – \sin 2x = 0\\
     \Rightarrow 1 – 2{\sin ^2}2x – \sin 2x = 0\\
     \Rightarrow 2{\sin ^2}2x + \sin 2x – 1 = 0\\
     \Rightarrow \left( {2\sin 2x – 1} \right)\left( {\sin 2x + 1} \right) = 0\\
     \Rightarrow \left[ \begin{array}{l}
    \sin 2x = \dfrac{1}{2}\\
    \sin 2x =  – 1
    \end{array} \right.\\
     \Rightarrow \left[ \begin{array}{l}
    2x = \dfrac{\pi }{6} + k2\pi \\
    2x = \dfrac{{5\pi }}{6} + k2\pi \\
    2x = \dfrac{{ – \pi }}{2} + k2\pi 
    \end{array} \right. \Rightarrow \left[ \begin{array}{l}
    x = \dfrac{\pi }{{12}} + k\pi \\
    x = \dfrac{{5\pi }}{{12}} + k\pi \\
    x =  – \dfrac{\pi }{4} + k\pi 
    \end{array} \right.\\
    b)\\
    \tan 4x = \tan 2x\\
     \Rightarrow 4x = 2x + k\pi \\
     \Rightarrow 2x = k\pi \\
     \Rightarrow x = \dfrac{{k\pi }}{2}\\
    c)\cos 4x = \sin 2x\\
     \Rightarrow \sin \left( {\dfrac{\pi }{2} – 4x} \right) = \sin 2x\\
     \Rightarrow \left[ \begin{array}{l}
    \dfrac{\pi }{2} – 4x = 2x + k2\pi \\
    \dfrac{\pi }{2} – 4x = \pi  – 2x + k2\pi 
    \end{array} \right.\\
     \Rightarrow \left[ \begin{array}{l}
    x = \dfrac{\pi }{{12}} – \dfrac{{k\pi }}{3}\\
    x =  – \dfrac{\pi }{4} – k\pi 
    \end{array} \right.\\
    d){\sin ^2}3x = 0\\
     \Rightarrow \sin 3x = 0\\
     \Rightarrow 3x = k\pi \\
    x = \dfrac{{k\pi }}{3}\\
    e)\cot \left( {3x + 1} \right) = \tan \left( {x – \dfrac{\pi }{2}} \right)\\
     \Rightarrow \tan \left( {\dfrac{\pi }{2} – 3x – 1} \right) = \tan \left( {x – \dfrac{\pi }{2}} \right)\\
     \Rightarrow \dfrac{\pi }{2} – 3x – 1 = x – \dfrac{\pi }{2} + k\pi \\
     \Rightarrow x = \dfrac{\pi }{4} – \dfrac{1}{4} – \dfrac{\pi }{4}
    \end{array}$

    Bình luận

Viết một bình luận