D=1/2018(2/1 +3/2 + 4/3 + 5/4 +…+2019/2018) 19/08/2021 Bởi Hadley D=1/2018(2/1 +3/2 + 4/3 + 5/4 +…+2019/2018)
D = $\dfrac{1}{2018}$ ( $\dfrac{2}{1}$ + $\dfrac{3}{2}$ + $\dfrac{4}{5}$ + …. + $\dfrac{2019}{2018}$ = $\dfrac{1}{2018}$ ( 2018 + 1 + $\dfrac{1}{2}$ + $\dfrac{1}{5}$ + …. + $\dfrac{1}{2018}$ `= 1 +` $\dfrac{1}{2018}$ `( 1 +` $\dfrac{1}{2}$ `+` $\dfrac{1}{5}$ `+ …. +` $\dfrac{1}{2018}$ Tách `1 +` $\dfrac{1}{2}$ `+` $\dfrac{1}{5}$ `+ …. +` $\dfrac{1}{2018}$ = C `⇒ C = 1 +` ($\dfrac{1}{2}$ `+` $\dfrac{1}{5}$ `+ …. +` $\dfrac{1}{2018}$) Ta có: $\dfrac{1}{2}$ `>` $\dfrac{1}{2019}$ $\dfrac{1}{3}$ `>` $\dfrac{1}{2019}$ `……` $\dfrac{1}{2018}$ `>` $\dfrac{1}{2019}$ `⇒ 1` `+` ($\dfrac{1}{2}$ + $\dfrac{1}{5}$ `+ …. +` $\dfrac{1}{2018}$) `( 2017` số`)` `= 1 +` $\dfrac{1}{2019}$.2017 `= 1 +` $\dfrac{2017}{2019}$ Khi đó: `D= 1 `+ $\dfrac{1}{2018}$`.(1 +` $\dfrac{2017}{2019}$`)` `= 1 +` $\dfrac{1}{2018}$ `+` $\dfrac{2017}{2019}$ `=` $\dfrac{2019}{2018}$ `+` $\dfrac{2017}{2019}$ Bình luận
D=1/2018(2/1 +3/2 + 4/3 + 5/4 +…+2019/2018) D=1/2018((1+1/1)+(1+1/2)+….+(1+1/2018)) D=1/2018((1+1+….+1)+(1/1+1/2+1/3+…1/2018)) D=1/2018(1*2018+(1/1+1/2+1/3+…1/2018)) D=1/2018(2018+(1/1+1/2+1/3+…1/2018)) D=1+1/2018(1/1+1/2+1/3+…1/2018) D-1=1/2018(1/1+1/2+1/3+…1/2018) (D-1)*2018=1/1+1/2+1/3+…1/2018 Bình luận
D = $\dfrac{1}{2018}$ ( $\dfrac{2}{1}$ + $\dfrac{3}{2}$ + $\dfrac{4}{5}$ + …. + $\dfrac{2019}{2018}$
= $\dfrac{1}{2018}$ ( 2018 + 1 + $\dfrac{1}{2}$ + $\dfrac{1}{5}$ + …. + $\dfrac{1}{2018}$
`= 1 +` $\dfrac{1}{2018}$ `( 1 +` $\dfrac{1}{2}$ `+` $\dfrac{1}{5}$ `+ …. +` $\dfrac{1}{2018}$
Tách `1 +` $\dfrac{1}{2}$ `+` $\dfrac{1}{5}$ `+ …. +` $\dfrac{1}{2018}$ = C
`⇒ C = 1 +` ($\dfrac{1}{2}$ `+` $\dfrac{1}{5}$ `+ …. +` $\dfrac{1}{2018}$)
Ta có: $\dfrac{1}{2}$ `>` $\dfrac{1}{2019}$
$\dfrac{1}{3}$ `>` $\dfrac{1}{2019}$
`……`
$\dfrac{1}{2018}$ `>` $\dfrac{1}{2019}$
`⇒ 1` `+` ($\dfrac{1}{2}$ + $\dfrac{1}{5}$ `+ …. +` $\dfrac{1}{2018}$) `( 2017` số`)`
`= 1 +` $\dfrac{1}{2019}$.2017
`= 1 +` $\dfrac{2017}{2019}$
Khi đó:
`D= 1 `+ $\dfrac{1}{2018}$`.(1 +` $\dfrac{2017}{2019}$`)`
`= 1 +` $\dfrac{1}{2018}$ `+` $\dfrac{2017}{2019}$
`=` $\dfrac{2019}{2018}$ `+` $\dfrac{2017}{2019}$
D=1/2018(2/1 +3/2 + 4/3 + 5/4 +…+2019/2018)
D=1/2018((1+1/1)+(1+1/2)+….+(1+1/2018))
D=1/2018((1+1+….+1)+(1/1+1/2+1/3+…1/2018))
D=1/2018(1*2018+(1/1+1/2+1/3+…1/2018))
D=1/2018(2018+(1/1+1/2+1/3+…1/2018))
D=1+1/2018(1/1+1/2+1/3+…1/2018)
D-1=1/2018(1/1+1/2+1/3+…1/2018)
(D-1)*2018=1/1+1/2+1/3+…1/2018