d) 2-x/2016-1=1-x/2017-x/2018 e) x²+6x+9=144 f) x³-3x²+4=0

d) 2-x/2016-1=1-x/2017-x/2018
e) x²+6x+9=144
f) x³-3x²+4=0

0 bình luận về “d) 2-x/2016-1=1-x/2017-x/2018 e) x²+6x+9=144 f) x³-3x²+4=0”

  1. `d. 2-x/2016-1=1-x/2017-x/2018`

    `⇔2-x/2016-1+2=1-x/2017+1-x/2018+1`

    `⇔2018-x/2016=2018-x/2017-x+2018/2018`

    `⇔(2018-x)(1/2016-1/2017+1/2018)=0`

    `⇔2018-x=0 (vì 1/2016-1/2017+1/2018` $\neq$ `0)`

    `⇔x=2018`

    `e.x²+6x+9=144`

    `<=> (x-3)^2 =144`

    `<=> x-3=±12`

    `+) x-3=12`

    `=> x=15`

    `+) x-3=-12`

    `=>x=-9`

    `<=> x=15` hoặc `x=-9`

    `f. x^3 – 3x^2 + 4 =0`

    `<=> (x^3 + 1) – (3x^2 – 3 ) =0`

    `<=> (x+1)(x^2 – x +1 ) – 3 (x-1)(x +1) =0`

    `<=> (x +1)(x^2 – 4x +4) =0`

    `<=> (x +1)(x -2)^2 =0`

    `<=> x =-1` hoặc `x =2`

    $army×blink$

    Bình luận
  2. d)2-x/2016-1=1-x/2017-x/2018

    ⇔2-x/2016-1+2=1-x/2017+1-x/2018+1

    ⇔2018-x/2016=2018-x/2017-x+2018/2018

    ⇔(2018-x)(1/2016-1/2017+1/2018)=0

    ⇔2018-x=0 (vì 1/2016-1/2017+1/2018 khác 0)

    ⇔x=2018

    Vậy S={2018}

    e)x²+6x+9=144

    ⇔(x+3)²=144

    ⇔x+3=12 hoặc x+3=-12

    ⇔x=9                 x=-15

    Vậy S={-15;9}

    f)x³-3x²+4=0

    ⇔x³-2x²-x²+4=0

    ⇔x²(x-2)-(x-2)(x+2)=0

    ⇔(x-2)(x²-x-2)=0

    ⇔(x-2)(x²+x-2x-2)=0

    ⇔(x-2)[x(x+1)-2(x+1)]=0

    ⇔(x-2)²(x+1)=0

    ⇔x-2=0 hoặc x+1=0

    ⇔x=2             x=-1

    Vậy S={-1; 2}

    Chúc bn hc tốt, cho mk 5 sao và ctlhn nha^^

    Bình luận

Viết một bình luận