D= (7/√2-1 + 56/√2-4 + 3/√3+ √2) : √12-6 √3, Rút gọn C= a+√a/√a +1 – a√x – x√a/√ax. Rút gọn giả sử biểu thức có nghĩa 27/07/2021 Bởi Kylie D= (7/√2-1 + 56/√2-4 + 3/√3+ √2) : √12-6 √3, Rút gọn C= a+√a/√a +1 – a√x – x√a/√ax. Rút gọn giả sử biểu thức có nghĩa
Giải thích các bước giải: Ta có: \(\begin{array}{l}D = \left( {\dfrac{7}{{\sqrt 2 – 1}} + \dfrac{{56}}{{\sqrt 2 – 4}} + \dfrac{3}{{\sqrt 3 + \sqrt 2 }}} \right):\sqrt {12 – 6\sqrt 3 } \\ = \left( {\dfrac{{7\left( {\sqrt 2 + 1} \right)}}{{\left( {\sqrt 2 – 1} \right)\left( {\sqrt 2 + 1} \right)}} + \dfrac{{56\left( {\sqrt 2 + 4} \right)}}{{\left( {\sqrt 2 – 4} \right)\left( {\sqrt 2 + 4} \right)}} + \dfrac{{3\left( {\sqrt 3 – \sqrt 2 } \right)}}{{\left( {\sqrt 3 + \sqrt 2 } \right)\left( {\sqrt 3 – \sqrt 2 } \right)}}} \right):\sqrt {9 – 2.3.\sqrt 3 + 3} \\ = \left( {\dfrac{{7\left( {\sqrt 2 + 1} \right)}}{{2 – 1}} + \dfrac{{56\left( {\sqrt 2 + 4} \right)}}{{2 – 16}} + \dfrac{{3.\left( {\sqrt 3 – \sqrt 2 } \right)}}{{3 – 2}}} \right):\sqrt {{{\left( {3 – \sqrt 3 } \right)}^2}} \\ = \left( {7\left( {\sqrt 2 + 1} \right) – 4\left( {\sqrt 2 + 4} \right) + 3\left( {\sqrt 3 – \sqrt 2 } \right)} \right):\left( {3 – \sqrt 3 } \right)\\ = \left( {3\sqrt 3 – 9} \right):\left( {3 – \sqrt 3 } \right)\\ = \left[ {3.\left( {\sqrt 3 – 3} \right)} \right]:\left( {3 – \sqrt 3 } \right)\\ = – 3\\C = \dfrac{{a + \sqrt a }}{{\sqrt a + 1}} – \dfrac{{a\sqrt x – x\sqrt a }}{{\sqrt {ax} }}\,\,\,\,\,\,\,\,\,\,\,\,\left( \begin{array}{l}a > 0\\x > 0\end{array} \right)\\ = \dfrac{{\sqrt a \left( {\sqrt a + 1} \right)}}{{\sqrt a + 1}} – \dfrac{{\sqrt {ax} \left( {\sqrt a – \sqrt x } \right)}}{{\sqrt {ax} }}\\ = \sqrt a – \left( {\sqrt a – \sqrt x } \right)\\ = \sqrt x \end{array}\) Bình luận
Giải thích các bước giải:
Ta có:
\(\begin{array}{l}
D = \left( {\dfrac{7}{{\sqrt 2 – 1}} + \dfrac{{56}}{{\sqrt 2 – 4}} + \dfrac{3}{{\sqrt 3 + \sqrt 2 }}} \right):\sqrt {12 – 6\sqrt 3 } \\
= \left( {\dfrac{{7\left( {\sqrt 2 + 1} \right)}}{{\left( {\sqrt 2 – 1} \right)\left( {\sqrt 2 + 1} \right)}} + \dfrac{{56\left( {\sqrt 2 + 4} \right)}}{{\left( {\sqrt 2 – 4} \right)\left( {\sqrt 2 + 4} \right)}} + \dfrac{{3\left( {\sqrt 3 – \sqrt 2 } \right)}}{{\left( {\sqrt 3 + \sqrt 2 } \right)\left( {\sqrt 3 – \sqrt 2 } \right)}}} \right):\sqrt {9 – 2.3.\sqrt 3 + 3} \\
= \left( {\dfrac{{7\left( {\sqrt 2 + 1} \right)}}{{2 – 1}} + \dfrac{{56\left( {\sqrt 2 + 4} \right)}}{{2 – 16}} + \dfrac{{3.\left( {\sqrt 3 – \sqrt 2 } \right)}}{{3 – 2}}} \right):\sqrt {{{\left( {3 – \sqrt 3 } \right)}^2}} \\
= \left( {7\left( {\sqrt 2 + 1} \right) – 4\left( {\sqrt 2 + 4} \right) + 3\left( {\sqrt 3 – \sqrt 2 } \right)} \right):\left( {3 – \sqrt 3 } \right)\\
= \left( {3\sqrt 3 – 9} \right):\left( {3 – \sqrt 3 } \right)\\
= \left[ {3.\left( {\sqrt 3 – 3} \right)} \right]:\left( {3 – \sqrt 3 } \right)\\
= – 3\\
C = \dfrac{{a + \sqrt a }}{{\sqrt a + 1}} – \dfrac{{a\sqrt x – x\sqrt a }}{{\sqrt {ax} }}\,\,\,\,\,\,\,\,\,\,\,\,\left( \begin{array}{l}
a > 0\\
x > 0
\end{array} \right)\\
= \dfrac{{\sqrt a \left( {\sqrt a + 1} \right)}}{{\sqrt a + 1}} – \dfrac{{\sqrt {ax} \left( {\sqrt a – \sqrt x } \right)}}{{\sqrt {ax} }}\\
= \sqrt a – \left( {\sqrt a – \sqrt x } \right)\\
= \sqrt x
\end{array}\)