D=(a√a-1/a-√a-a√a+1/a+√a):a+2/a-2 A)tìm đk B)rút gọn C)thay D với a=3-2√2 D)tìm a€Z để D€Z 18/08/2021 Bởi Ayla D=(a√a-1/a-√a-a√a+1/a+√a):a+2/a-2 A)tìm đk B)rút gọn C)thay D với a=3-2√2 D)tìm a€Z để D€Z
Đáp án: d. a=6 Giải thích các bước giải: \(\begin{array}{l}a.DK:a > 0;a \ne \left\{ {1;2} \right\}\\b.D = \left( {\dfrac{{a\sqrt a – 1}}{{a – \sqrt a }} – \dfrac{{a\sqrt a + 1}}{{a + \sqrt a }}} \right):\dfrac{{a + 2}}{{a – 2}}\\ = \left[ {\dfrac{{\left( {\sqrt a – 1} \right)\left( {a + \sqrt a + 1} \right)}}{{\sqrt a \left( {\sqrt a – 1} \right)}} – \dfrac{{\left( {\sqrt a + 1} \right)\left( {a – \sqrt a + 1} \right)}}{{\sqrt a \left( {\sqrt a + 1} \right)}}} \right].\dfrac{{a – 2}}{{a + 2}}\\ = \left( {\dfrac{{a + \sqrt a + 1 – a + \sqrt a – 1}}{{\sqrt a }}} \right).\dfrac{{a – 2}}{{a + 2}}\\ = \dfrac{{2\sqrt a }}{{\sqrt a }}.\dfrac{{a – 2}}{{a + 2}}\\ = \dfrac{{2a – 4}}{{a + 2}}\\c.Thay:a = 3 – 2\sqrt 2 \\ \to D = \dfrac{{2\left( {3 – 2\sqrt 2 } \right) – 4}}{{3 – 2\sqrt 2 + 2}} = \dfrac{{6 – 4\sqrt 2 – 4}}{{5 – 2\sqrt 2 }} = \dfrac{{2 – 4\sqrt 2 }}{{5 – 2\sqrt 2 }}\\d.D = \dfrac{{2a – 4}}{{a + 2}} = \dfrac{{2\left( {a + 2} \right) – 8}}{{a + 2}}\\ = 2 – \dfrac{8}{{a + 2}}\\D \in Z\\ \to \dfrac{8}{{a + 2}} \in Z\\ \Leftrightarrow a + 2 \in U\left( 8 \right)\\ \Leftrightarrow \left[ \begin{array}{l}a + 2 = 8\\a + 2 = – 8\\a + 2 = 4\\a + 2 = – 4\\a + 2 = 2\\a + 2 = – 2\\a + 2 = 1\\a + 2 = – 1\end{array} \right. \to \left[ \begin{array}{l}a = 6\\a = – 10\left( l \right)\\a = 2\left( l \right)\\a = – 6\left( l \right)\\a = 0\left( l \right)\\a = – 4\left( l \right)\\a = – 1\left( l \right)\\a = – 3\left( l \right)\end{array} \right.\\ \to a = 6\end{array}\) Bình luận
Đáp án:
d. a=6
Giải thích các bước giải:
\(\begin{array}{l}
a.DK:a > 0;a \ne \left\{ {1;2} \right\}\\
b.D = \left( {\dfrac{{a\sqrt a – 1}}{{a – \sqrt a }} – \dfrac{{a\sqrt a + 1}}{{a + \sqrt a }}} \right):\dfrac{{a + 2}}{{a – 2}}\\
= \left[ {\dfrac{{\left( {\sqrt a – 1} \right)\left( {a + \sqrt a + 1} \right)}}{{\sqrt a \left( {\sqrt a – 1} \right)}} – \dfrac{{\left( {\sqrt a + 1} \right)\left( {a – \sqrt a + 1} \right)}}{{\sqrt a \left( {\sqrt a + 1} \right)}}} \right].\dfrac{{a – 2}}{{a + 2}}\\
= \left( {\dfrac{{a + \sqrt a + 1 – a + \sqrt a – 1}}{{\sqrt a }}} \right).\dfrac{{a – 2}}{{a + 2}}\\
= \dfrac{{2\sqrt a }}{{\sqrt a }}.\dfrac{{a – 2}}{{a + 2}}\\
= \dfrac{{2a – 4}}{{a + 2}}\\
c.Thay:a = 3 – 2\sqrt 2 \\
\to D = \dfrac{{2\left( {3 – 2\sqrt 2 } \right) – 4}}{{3 – 2\sqrt 2 + 2}} = \dfrac{{6 – 4\sqrt 2 – 4}}{{5 – 2\sqrt 2 }} = \dfrac{{2 – 4\sqrt 2 }}{{5 – 2\sqrt 2 }}\\
d.D = \dfrac{{2a – 4}}{{a + 2}} = \dfrac{{2\left( {a + 2} \right) – 8}}{{a + 2}}\\
= 2 – \dfrac{8}{{a + 2}}\\
D \in Z\\
\to \dfrac{8}{{a + 2}} \in Z\\
\Leftrightarrow a + 2 \in U\left( 8 \right)\\
\Leftrightarrow \left[ \begin{array}{l}
a + 2 = 8\\
a + 2 = – 8\\
a + 2 = 4\\
a + 2 = – 4\\
a + 2 = 2\\
a + 2 = – 2\\
a + 2 = 1\\
a + 2 = – 1
\end{array} \right. \to \left[ \begin{array}{l}
a = 6\\
a = – 10\left( l \right)\\
a = 2\left( l \right)\\
a = – 6\left( l \right)\\
a = 0\left( l \right)\\
a = – 4\left( l \right)\\
a = – 1\left( l \right)\\
a = – 3\left( l \right)
\end{array} \right.\\
\to a = 6
\end{array}\)