D=limx → +∞ ($\sqrt[3]{x^{3}-4x^{2}+1 }$ -x) 07/11/2021 Bởi Iris D=limx → +∞ ($\sqrt[3]{x^{3}-4x^{2}+1 }$ -x)
$\lim\limits_{x\to +\infty}(\sqrt[3]{x^3-4x^2+1}-x)$ $=\lim\limits_{x\to +\infty}\dfrac{x^3-4x^2+1-x^3}{\sqrt[3]{x^3-4x^2+1}^2+x.\sqrt[3]{x^3-4x^2+1}+x^2}$ $=\lim\limits_{x\to +\infty}\dfrac{-4x^2+1}{\sqrt[3]{x^3\Big(1-\dfrac{4}{x}+\dfrac{1}{x^3} \Big)}^2+ x\sqrt[3]{x^3\Big(1-\dfrac{4}{x}+\dfrac{1}{x^3}}+x^2}$ $=\lim\limits_{x\to +\infty}\dfrac{-4+\dfrac{1}{x}}{\sqrt[3]{1-\dfrac{4}{x}+\dfrac{1}{x^3}}^2+\sqrt[3]{1-\dfrac{4}{x}+\dfrac{1}{x^3}}+1}$ $=\dfrac{-4}{1+1+1}$ $=\dfrac{-4}{3}$ Bình luận
$\lim\limits_{x\to +\infty}(\sqrt[3]{x^3-4x^2+1}-x)$
$=\lim\limits_{x\to +\infty}\dfrac{x^3-4x^2+1-x^3}{\sqrt[3]{x^3-4x^2+1}^2+x.\sqrt[3]{x^3-4x^2+1}+x^2}$
$=\lim\limits_{x\to +\infty}\dfrac{-4x^2+1}{\sqrt[3]{x^3\Big(1-\dfrac{4}{x}+\dfrac{1}{x^3} \Big)}^2+ x\sqrt[3]{x^3\Big(1-\dfrac{4}{x}+\dfrac{1}{x^3}}+x^2}$
$=\lim\limits_{x\to +\infty}\dfrac{-4+\dfrac{1}{x}}{\sqrt[3]{1-\dfrac{4}{x}+\dfrac{1}{x^3}}^2+\sqrt[3]{1-\dfrac{4}{x}+\dfrac{1}{x^3}}+1}$
$=\dfrac{-4}{1+1+1}$
$=\dfrac{-4}{3}$