Đa thức nào dưới đây có một nghiêm? a) 2x^3+5x b) x^2+2017 c) x-10-x+10 d) x^2-4x

Đa thức nào dưới đây có một nghiêm?
a) 2x^3+5x
b) x^2+2017
c) x-10-x+10
d) x^2-4x

0 bình luận về “Đa thức nào dưới đây có một nghiêm? a) 2x^3+5x b) x^2+2017 c) x-10-x+10 d) x^2-4x”

  1. `a,` `2x^3+5x=0`

    `⇒x(2x^2+5)=0`

    \(⇒\left[ \begin{array}{l}x=0\\x=\dfrac{-5}2(\text{vô lý)}\end{array} \right.\)

    `b,` `x^2+2017=0`

    `⇒x^2=-2017` `(`vô lý`)`

    `c,` `x-10-x+10=0`

    `⇒0=0` `(TM∀x)`

    `d,` `x^2-4x=0`

    `⇒x(x-4)=0`

    \(⇒\left[ \begin{array}{l}x=0\\x=4\end{array} \right.\)

    Vậy đa thức `2x^3+5x` có `1` nghiệm

    Bình luận
  2. Đáp án:

     

    Giải thích các bước giải:

    `a) 2x^3+5x=0`

    `<=>x(2x^2+5)=0`

    `=>x=0` vì `2x^2+5>0`

    `b) x^2+2017=0`

    vì `x^2+2017>=2017>0`

    =>pt vô nghiệm

    `c) x-10-x+10=0`

    `<=>0=0`

    vậy pt có vô số nghiệm

    `d) x^2-4x=0`

    `<=>x(x-4)=0`

    `=>x=0` hoặc `x=4`

    vậy pt có 2 no

    vậy đa thức `a,2x^3+5x` có 1 nghiệm

    Bình luận

Viết một bình luận