dạng toán mà dãy số có dạng a/a+1 A=5/6+11/12+19/20+29/30+41/42+55/56+71/72+89/90

dạng toán mà dãy số có dạng a/a+1
A=5/6+11/12+19/20+29/30+41/42+55/56+71/72+89/90

0 bình luận về “dạng toán mà dãy số có dạng a/a+1 A=5/6+11/12+19/20+29/30+41/42+55/56+71/72+89/90”

  1. Đáp án:

    Ta có : 

    A =  $\dfrac{5}{6}$  + $\dfrac{11}{12}$  + $\dfrac{19}{20}$ + $\dfrac{29}{30}$  + $\dfrac{41}{42}$  + $\dfrac{55}{56}$  + $\dfrac{71}{72}$  + $\dfrac{89}{90}$

    => A = 1  – $\dfrac{1}{6}$  +  1 – $\dfrac{1}{12}$  + 1 – $\dfrac{1}{20}$ + 1 – $\dfrac{1}{30}$  +  1 – $\dfrac{1}{42}$  + 1 – $\dfrac{1}{56}$  + 1 – $\dfrac{1}{72}$  + 1 – $\dfrac{1}{90}$

    => A = 8 – ( $\dfrac{1}{6}$  + $\dfrac{1}{12}$  + $\dfrac{1}{20}$ + $\dfrac{1}{30}$  + $\dfrac{1}{42}$  + $\dfrac{1}{56}$  + $\dfrac{1}{72}$  + $\dfrac{1}{90}$

    Đặt B = $\dfrac{1}{6}$  + $\dfrac{1}{12}$  + $\dfrac{1}{20}$ + $\dfrac{1}{30}$  + $\dfrac{1}{42}$  + $\dfrac{1}{56}$  + $\dfrac{1}{72}$  + $\dfrac{1}{90}$

    => B = $\dfrac{1}{2.3}$  + $\dfrac{1}{3.4}$  + $\dfrac{1}{4.5}$ + $\dfrac{1}{5.6}$  + $\dfrac{1}{6.7}$  + $\dfrac{1}{7.8}$  + $\dfrac{1}{8.9}$  + $\dfrac{1}{9.10}$

    = $\dfrac{1}{2}$  –  $\dfrac{1}{3}$  + $\dfrac{1}{3}$ –  $\dfrac{1}{4}$  + …. + $\dfrac{1}{9}$  – $\dfrac{1}{10}$

    = $\dfrac{1}{2}$ – $\dfrac{1}{10}$ = $\dfrac{2}{5}$

    => A = 8 – $\dfrac{2}{5}$ = $\dfrac{19}{20}$

    Giải thích các bước giải:

     

    Bình luận
  2. A = 5/6 + 11/12 + 19/20 + 29/30 + 41/42 + 55/56 + 71/72 + 89/90

    A = (1 – 1/6) + (1 – 1/12) + … + ( 1 – 1/90)

    A = (1 . 8) – (1/6 + 1/12 + 1/20 + … + 1/90)

    A = 8 – (1/2.3 + 1/3.4 + 1/4.5 + … + 1/9.10)

    A = 8 – (1/2 – 1/3 + 1/3 – 1/4 + 1/4 – 1/5 + … + 1/9 – 1/10)

    A = 8 – (1/2 – 1/10)

    A = 8 – 2/5

    A = 38/5

    Bình luận

Viết một bình luận