dãy số (Un) sau có phải cấp số nhân không? hãy giải thích , tìm số hạng đầu và công bội biết u1 = 1 và un+1=√(un) (n>=1) 13/07/2021 Bởi Savannah dãy số (Un) sau có phải cấp số nhân không? hãy giải thích , tìm số hạng đầu và công bội biết u1 = 1 và un+1=√(un) (n>=1)
$u_{n+1}=\sqrt{u_n}$ $u_1=1$ $u_2=\sqrt{u_1}=1$ $u_3=\sqrt{u_2}=1$ $u_4=\sqrt{u_3}=1$ $…$ Vậy $(u_n)$ là cấp số nhân $u_1=1; q=1$ Bình luận
Đáp án: Giải thích các bước giải: u1=1 u2=1 u3=1 …… => un+1=1 Dãy (un) là cấp số nhân có công bội là 1 Bình luận
$u_{n+1}=\sqrt{u_n}$
$u_1=1$
$u_2=\sqrt{u_1}=1$
$u_3=\sqrt{u_2}=1$
$u_4=\sqrt{u_3}=1$
$…$
Vậy $(u_n)$ là cấp số nhân $u_1=1; q=1$
Đáp án:
Giải thích các bước giải:
u1=1
u2=1
u3=1
……
=> un+1=1
Dãy (un) là cấp số nhân có công bội là 1