Đề: cho số a thỏa mãn ( a ³ – a ) ² – 12(a ³-a)+36=0. Tính P= a^6 – 2a^4 + a^2 -6 23/08/2021 Bởi Elliana Đề: cho số a thỏa mãn ( a ³ – a ) ² – 12(a ³-a)+36=0. Tính P= a^6 – 2a^4 + a^2 -6
Đáp án: $P=30$ Giải thích các bước giải: $(a^3-a)^2-12(a^3-a)+36=0$ $\rightarrow (a^3-a)^2-2.6(a^3-a)+6^2=0$ $\rightarrow (a^3-a-6)^2=0$ $\rightarrow a^3-a-6=0$ $\rightarrow a^3-a=6$ Mà: $P=a^6-2a^4+a^2-6$ $\rightarrow P=(a^3)^2-2a^3.a+a^2-6$ $\rightarrow P=(a^3-a)^2-6$ $\rightarrow P=6^2-6$ $\rightarrow P=30$ Bình luận
Đáp án:P=30
Giải thích các bước giải:
Đáp án:
$P=30$
Giải thích các bước giải:
$(a^3-a)^2-12(a^3-a)+36=0$
$\rightarrow (a^3-a)^2-2.6(a^3-a)+6^2=0$
$\rightarrow (a^3-a-6)^2=0$
$\rightarrow a^3-a-6=0$
$\rightarrow a^3-a=6$
Mà:
$P=a^6-2a^4+a^2-6$
$\rightarrow P=(a^3)^2-2a^3.a+a^2-6$
$\rightarrow P=(a^3-a)^2-6$
$\rightarrow P=6^2-6$
$\rightarrow P=30$