E = 1 – sin^2x + cot^2x . sin^2x F = cos^4x + sin^2x . cos^2x + sin^2x 18/09/2021 Bởi Ayla E = 1 – sin^2x + cot^2x . sin^2x F = cos^4x + sin^2x . cos^2x + sin^2x
$E=1-\sin^2x+\dfrac{\cos^2x}{\sin^2x}.\sin^2x$ $=1-\sin^2x+\cos^2x$ $=\cos^2x+\cos^2x$ $=2\cos^2x$ $F=\cos^4x+\sin^2x.\cos^2x+\sin^2x$ $=\cos^2x.\cos^2x+\sin^2x.\cos^2x+\sin^2x$ $=\cos^2x(\sin^2x+\cos^2x)+\sin^2x$ $=\cos^2x+\sin^2x$ $=1$ Bình luận
Đáp án:$E=2Cos^2x\\F=1$ Giải thích các bước giải: $E=1-sin^2x+cot^2x.sin^2x\\E=cos^2x+\dfrac{cos^2x}{sin^2x}.sin^2x\\E=2cos^2x\\F=cos^4x+sin^2x.cos^2x+sin^2x\\F=Cos^2x(Sin^2x+Cos^2x)+sin^2x\\=Cos^2x+Sin^2x\\=1$ Bình luận
$E=1-\sin^2x+\dfrac{\cos^2x}{\sin^2x}.\sin^2x$
$=1-\sin^2x+\cos^2x$
$=\cos^2x+\cos^2x$
$=2\cos^2x$
$F=\cos^4x+\sin^2x.\cos^2x+\sin^2x$
$=\cos^2x.\cos^2x+\sin^2x.\cos^2x+\sin^2x$
$=\cos^2x(\sin^2x+\cos^2x)+\sin^2x$
$=\cos^2x+\sin^2x$
$=1$
Đáp án:$E=2Cos^2x\\F=1$
Giải thích các bước giải:
$E=1-sin^2x+cot^2x.sin^2x\\E=cos^2x+\dfrac{cos^2x}{sin^2x}.sin^2x\\E=2cos^2x\\F=cos^4x+sin^2x.cos^2x+sin^2x\\F=Cos^2x(Sin^2x+Cos^2x)+sin^2x\\=Cos^2x+Sin^2x\\=1$