xét dạng tam giác ABC thỏa:(1+cosB)/sinB=(2BC+AB)/ √(4(BC) ²-(AB) ²) 12/11/2021 Bởi Liliana xét dạng tam giác ABC thỏa:(1+cosB)/sinB=(2BC+AB)/ √(4(BC) ²-(AB) ²)
Giải thích các bước giải: Ta có:$\cos B=\dfrac{BA^2+BC^2-AC^2}{2BA.BC}$Lại có:$\dfrac{1+\cos B}{\sin B}$$=\dfrac{1+\cos B}{\sqrt{\sin^2B}}$$=\dfrac{1+\cos B}{\sqrt{1-\cos^2B}}$ $=\dfrac{1+\cos B}{\sqrt{(1-\cos B)(1+\cos B)}}$ $=\dfrac{\sqrt{1+\cos B}}{\sqrt{1-\cos B}}$ $=\sqrt{\dfrac{1+\cos B}{1-\cos B}}$ $=\sqrt{\dfrac{1+\dfrac{BA^2+BC^2-AC^2}{2BA.BC}}{1-\dfrac{BA^2+BC^2-AC^2}{2BA.BC}}}$ $=\sqrt{\dfrac{2BA.BC+BA^2+BC^2-AC^2}{2BA.BC-(BA^2+BC^2-AC^2)}}$ $=\sqrt{\dfrac{BA^2+2BA.BC+BC^2-AC^2}{AC^2-(BA^2-2BA.BC+BC^2)}}$ $=\sqrt{\dfrac{(BA+BC)^2-AC^2}{AC^2-(BA-BC)^2}}$ Mặt khác: $\dfrac{1+\cos B}{\sin B}=\dfrac{2BC+AB}{\sqrt{4BC^2-AB^2}}$ $\to \sqrt{\dfrac{(BA+BC)^2-AC^2}{AC^2-(BA-BC)^2}}=\dfrac{2BC+AB}{\sqrt{4BC^2-AB^2}}$ $\to \dfrac{(BA+BC)^2-AC^2}{AC^2-(BA-BC)^2}=\dfrac{(2BC+AB)^2}{4BC^2-AB^2}$ $\to \dfrac{(BA+BC)^2-AC^2}{AC^2-(BA-BC)^2}=\dfrac{(2BC+AB)^2}{(2BC+AB)(2BC-AB)}$ $\to \dfrac{(BA+BC)^2-AC^2}{AC^2-(BA-BC)^2}=\dfrac{2BC+AB}{2BC-AB}$ $\to \dfrac{(c+a)^2-b^2}{b^2-(c-a)^2}=\dfrac{2a+c}{2a-c}$ đặt $AB=c, BC=a, CA=b, a, b, c>0$ $\to (2a-c)((c+a)^2-b^2)=(2a+c)(b^2-(c-a)^2)$ $\to -c^3+3a^2c+cb^2+2a^3-2ab^2=-c^3+3a^2c+cb^2-2a^3+2ab^2$ $\to 4a^3-4b^2a=0$ $\to 4a(a^2-b^2)=0$ $\to a^2-b^2=0$ vì $ a>0$ $\to a^2=b^2$ $\to a=b$ vì $a, b >0$ $\to \Delta ABC$ cân tại $C$ Bình luận
Giải thích các bước giải:
Ta có:
$\cos B=\dfrac{BA^2+BC^2-AC^2}{2BA.BC}$
Lại có:
$\dfrac{1+\cos B}{\sin B}$
$=\dfrac{1+\cos B}{\sqrt{\sin^2B}}$
$=\dfrac{1+\cos B}{\sqrt{1-\cos^2B}}$
$=\dfrac{1+\cos B}{\sqrt{(1-\cos B)(1+\cos B)}}$
$=\dfrac{\sqrt{1+\cos B}}{\sqrt{1-\cos B}}$
$=\sqrt{\dfrac{1+\cos B}{1-\cos B}}$
$=\sqrt{\dfrac{1+\dfrac{BA^2+BC^2-AC^2}{2BA.BC}}{1-\dfrac{BA^2+BC^2-AC^2}{2BA.BC}}}$
$=\sqrt{\dfrac{2BA.BC+BA^2+BC^2-AC^2}{2BA.BC-(BA^2+BC^2-AC^2)}}$
$=\sqrt{\dfrac{BA^2+2BA.BC+BC^2-AC^2}{AC^2-(BA^2-2BA.BC+BC^2)}}$
$=\sqrt{\dfrac{(BA+BC)^2-AC^2}{AC^2-(BA-BC)^2}}$
Mặt khác:
$\dfrac{1+\cos B}{\sin B}=\dfrac{2BC+AB}{\sqrt{4BC^2-AB^2}}$
$\to \sqrt{\dfrac{(BA+BC)^2-AC^2}{AC^2-(BA-BC)^2}}=\dfrac{2BC+AB}{\sqrt{4BC^2-AB^2}}$
$\to \dfrac{(BA+BC)^2-AC^2}{AC^2-(BA-BC)^2}=\dfrac{(2BC+AB)^2}{4BC^2-AB^2}$
$\to \dfrac{(BA+BC)^2-AC^2}{AC^2-(BA-BC)^2}=\dfrac{(2BC+AB)^2}{(2BC+AB)(2BC-AB)}$
$\to \dfrac{(BA+BC)^2-AC^2}{AC^2-(BA-BC)^2}=\dfrac{2BC+AB}{2BC-AB}$
$\to \dfrac{(c+a)^2-b^2}{b^2-(c-a)^2}=\dfrac{2a+c}{2a-c}$ đặt $AB=c, BC=a, CA=b, a, b, c>0$
$\to (2a-c)((c+a)^2-b^2)=(2a+c)(b^2-(c-a)^2)$
$\to -c^3+3a^2c+cb^2+2a^3-2ab^2=-c^3+3a^2c+cb^2-2a^3+2ab^2$
$\to 4a^3-4b^2a=0$
$\to 4a(a^2-b^2)=0$
$\to a^2-b^2=0$ vì $ a>0$
$\to a^2=b^2$
$\to a=b$ vì $a, b >0$
$\to \Delta ABC$ cân tại $C$