Xét dấu biểu thức sau a. F(x)=(x-2)(x+4)(3-2x) b. F(x)=(4x-2)(3x+5)(7-2x) 26/09/2021 Bởi Lydia Xét dấu biểu thức sau a. F(x)=(x-2)(x+4)(3-2x) b. F(x)=(4x-2)(3x+5)(7-2x)
Giải thích các bước giải: a) f(x)=(x-2)(x+4)(3-2x) Xét x-2=0 ⇔x=2 x+4=0⇔ x=-4 3-2x=0⇔ x= $\frac{3}{2}$ Bảng xét dấu: x -∞ -4 3/2 2 +∞ x-2 – | – | – 0 + x+4 – 0 + | + | + 3-2x + | + 0 – | – f(x) + 0 – 0 + 0 – Vậy f(x) > 0 khi x ∈ (-∞; -4) U ($\frac{3}{2}$ ; 2) f(x) < 0 khi x ∈ (-4; $\frac{3}{2}$ ) U (2; +∞) b) f(x)=(4x-2)(3x+5)(7-2x) Xét 4x-2=0 ⇔ x=$\frac{1}{2}$ 3x+5=0 ⇔ x=$\frac{-5}{3}$ 7-2x =0 ⇔ x=$\frac{7}{2}$ Bảng xét dấu: x -∞ -5/3 1/2 7/2 +∞ 4x-2 – | – 0 + | + 3x+5 – 0 + | + | + 7-2x + | + | + 0 – f(x) + 0 – 0 + 0 – Vậy f(x) >0 khi x ∈ (-∞; $\frac{-5}{3}$) U ($\frac{1}{2}$; $\frac{7}{2}$) f(x) <0 khi x ∈ ( $\frac{-5}{3}$; $\frac{1}{2}$) U ($\frac{7}{2}$; +∞) Chúc bạn học tốt! Bình luận
Bảng xét dấu: $\begin{array}{l}a)\quad F(x) = (x-2)(x+4)(3-2x)\\\begin{array}{|c|ccc|}\hlinex &-\infty&&-4&&\dfrac32&&2&&+\infty\\\hlinex+4&&-&|&+&&+&&+&\\\hline3-2x&&+&&+&|&-&&-&\\\hlinex-2&&-&&-&&-&|&+&\\\hlineF(x)&&+&|&-&|&+&|&-&\\\hline\end{array}\\\Rightarrow \begin{cases}F(x) > 0 \Leftrightarrow x \in (-\infty;-4)\cup \left(\dfrac32;2\right)\\F(x) < 0 \Leftrightarrow x \in \left(-4;\dfrac32\right)\cup (2;+\infty) \end{cases}\\b)\quad F(x) = (4x-2)(3x+5)(7-2x)\\\begin{array}{|c|ccc|}\hlinex &-\infty&&-\dfrac53&&\dfrac12&&\dfrac72&&+\infty\\\hline3x+5&&-&|&+&&+&&+&\\\hline4x-2&&-&&-&|&+&&+&\\\hline7-2x&&+&&+&&+&|&-&\\\hlineF(x)&&+&|&-&|&+&|&-&\\\hline\end{array}\\\Rightarrow \begin{cases}F(x) > 0 \Leftrightarrow x \in \left(-\infty;-\dfrac53\right)\cup \left(\dfrac12;\dfrac72\right)\\F(x) < 0 \Leftrightarrow x \in \left(-\dfrac52;\dfrac12\right)\cup \left(\dfrac72;+\infty\right) \end{cases}\\\end{array}$ Bình luận
Giải thích các bước giải:
a) f(x)=(x-2)(x+4)(3-2x)
Xét x-2=0 ⇔x=2
x+4=0⇔ x=-4
3-2x=0⇔ x= $\frac{3}{2}$
Bảng xét dấu:
x -∞ -4 3/2 2 +∞
x-2 – | – | – 0 +
x+4 – 0 + | + | +
3-2x + | + 0 – | –
f(x) + 0 – 0 + 0 –
Vậy f(x) > 0 khi x ∈ (-∞; -4) U ($\frac{3}{2}$ ; 2)
f(x) < 0 khi x ∈ (-4; $\frac{3}{2}$ ) U (2; +∞)
b) f(x)=(4x-2)(3x+5)(7-2x)
Xét 4x-2=0 ⇔ x=$\frac{1}{2}$
3x+5=0 ⇔ x=$\frac{-5}{3}$
7-2x =0 ⇔ x=$\frac{7}{2}$
Bảng xét dấu:
x -∞ -5/3 1/2 7/2 +∞
4x-2 – | – 0 + | +
3x+5 – 0 + | + | +
7-2x + | + | + 0 –
f(x) + 0 – 0 + 0 –
Vậy f(x) >0 khi x ∈ (-∞; $\frac{-5}{3}$) U ($\frac{1}{2}$; $\frac{7}{2}$)
f(x) <0 khi x ∈ ( $\frac{-5}{3}$; $\frac{1}{2}$) U ($\frac{7}{2}$; +∞)
Chúc bạn học tốt!
Bảng xét dấu:
$\begin{array}{l}a)\quad F(x) = (x-2)(x+4)(3-2x)\\
\begin{array}{|c|ccc|}
\hline
x &-\infty&&-4&&\dfrac32&&2&&+\infty\\
\hline
x+4&&-&|&+&&+&&+&\\
\hline
3-2x&&+&&+&|&-&&-&\\
\hline
x-2&&-&&-&&-&|&+&\\
\hline
F(x)&&+&|&-&|&+&|&-&\\
\hline
\end{array}\\
\Rightarrow \begin{cases}F(x) > 0 \Leftrightarrow x \in (-\infty;-4)\cup \left(\dfrac32;2\right)\\
F(x) < 0 \Leftrightarrow x \in \left(-4;\dfrac32\right)\cup (2;+\infty) \end{cases}\\
b)\quad F(x) = (4x-2)(3x+5)(7-2x)\\
\begin{array}{|c|ccc|}
\hline
x &-\infty&&-\dfrac53&&\dfrac12&&\dfrac72&&+\infty\\
\hline
3x+5&&-&|&+&&+&&+&\\
\hline
4x-2&&-&&-&|&+&&+&\\
\hline
7-2x&&+&&+&&+&|&-&\\
\hline
F(x)&&+&|&-&|&+&|&-&\\
\hline
\end{array}\\
\Rightarrow \begin{cases}F(x) > 0 \Leftrightarrow x \in \left(-\infty;-\dfrac53\right)\cup \left(\dfrac12;\dfrac72\right)\\
F(x) < 0 \Leftrightarrow x \in \left(-\dfrac52;\dfrac12\right)\cup \left(\dfrac72;+\infty\right) \end{cases}\\
\end{array}$