Xét tính bị chặn của dãy số sau: un= 4-3n-2n^2

Xét tính bị chặn của dãy số sau: un= 4-3n-2n^2

0 bình luận về “Xét tính bị chặn của dãy số sau: un= 4-3n-2n^2”

  1. $u_n=-2n^2-3n+4$

    $=-2\Big( n^2+\dfrac{3}{2}n-2\Big)$

    $=-2\Big(n^2+2.n.\dfrac{3}{4}+\dfrac{9}{16}-\dfrac{41}{16}\Big)$

    $=-2\Big(n+\dfrac{9}{16}\Big)^2+\dfrac{41}{8}\le \dfrac{41}{8}$

    $\to (u_n)$ bị chặn trên.

    $\lim u_n=\lim n^2\Big(-2-\dfrac{3}{n}+\dfrac{4}{n^2}\Big)=-\infty$

    $\to(u_n)$ không bị chặn dưới.

    Bình luận
  2. Đáp án:

     

    Giải thích các bước giải:

     $U_n=4-3n-2n^2=-2(n^2+2n.\frac{3}{4}+\frac{9}{16})+4+\frac{9}{8}=\frac{41}{8}-(n+\frac{3}{4})^2<  \frac{41}{8}$

    Nên: $u_n$ bị chặn trên bởi $ \frac{41}{8}$

    Bình luận

Viết một bình luận