F = (1/7 + 1/23 – 1/1009 ) : ( 1/23 + 1/7 – 1/1009 + 1/7 * 1/23 * 1/1009 ) + 1 : (30 . 1009 -160)

F = (1/7 + 1/23 – 1/1009 ) : ( 1/23 + 1/7 – 1/1009 + 1/7 * 1/23 * 1/1009 ) + 1 : (30 . 1009 -160)

0 bình luận về “F = (1/7 + 1/23 – 1/1009 ) : ( 1/23 + 1/7 – 1/1009 + 1/7 * 1/23 * 1/1009 ) + 1 : (30 . 1009 -160)”

  1. Đáp án:

     `F=1`

    Giải thích các bước giải:

    `F = (1/7 + 1/23 – 1/1009 )÷( 1/23 + 1/7 – 1/1009 + 1/7 × 1/23 × 1/1009 ) + 1÷(30 × 1009 -160)`

    `=((23xx1009)/(7xx23xx1009)+(7xx1009)/(7xx23xx1009)-(7xx23)/(7xx23xx1009))÷((23xx1009)/(7xx23xx1009)+(7xx1009)/(7xx23xx1009)-(7xx23)/(7xx23xx1009)+1/7xx1/23xx1/1009)+1÷(30xx1009-160)`

    `=((23xx1009)/(7xx23xx1009)+(7xx1009)/(7xx23xx1009)-(7xx23)/(7xx23xx1009))÷((23xx1009)/(7xx23xx1009)+(7xx1009)/(7xx23xx1009)-(7xx23)/(7xx23xx1009)+1/(7xx23xx1009))+1/(30xx1009-160)` 

    `=((23xx1009+7xx1009-7xx23)/(7xx23xx1009))÷((23xx1009+7xx1009-7xx23+1)/(7xx23xx1009))+1/(30xx1009-160)`

    `=(23xx1009+7xx1009-7xx23)/(23xx1009+7xx1009-7xx23+1)+1/(30xx1009-160)`

    `=(30xx1009-161)/(30xx1009-160)+1/(30xx1009-160)`

    `=(30xx1009-161+1)/(30xx1009-160)`

    `=(30xx1009-160)/(30xx1009-160)`

    `=1`

    Bình luận
  2. `⇒F=(1/7+1/23-1/1009):(1/23+1/7-1/1009+1/7. 1/23. 1/1009)+1/{30.1009-160}`

    `⇒F=({23.1009}/{7.23.1009}+{7.1009}/{7.23.1009}-{7.23}/{7.23.1009}):({7.1009}/{7.23.1009}+ {23.1009}/{7.23.1009}-{7.23}/{7.23.1009}+1/{7.23.1009})+1/{30.1009-160}`

    `⇒F={7.1009+23.1009-7.23}/{7.23.1009}:{7.1009+23.1009-7.23+1}/{7.23.1009}+1/{30.1009-160}`

    `⇒F={7.1009+23.1009-7.23}/{7.1009+23.1009-7.23+1}+1/{30.1009-160}`

    `⇒F={(7+23).1009-161}/{(7+23).1009-160}+1/{30.1009-160}`

    `⇒F={30.1009-161}/{30.1009-160}+1/{30.1009-160}`

    `⇒F={30.1009-161+1}/{30.1009-160}`

    `⇒F={30.1009-160}/{30.1009-160}`

    `⇒F=1`

    Bình luận

Viết một bình luận