f) 2(x + 1)/ 3 – 1 = 3/2 – 1-2x / 4 g) 3(x + 1) / 10 = 2(x – 1) / 3 + 4/5 h) x^2 – x – 2 = 0 24/07/2021 Bởi aihong f) 2(x + 1)/ 3 – 1 = 3/2 – 1-2x / 4 g) 3(x + 1) / 10 = 2(x – 1) / 3 + 4/5 h) x^2 – x – 2 = 0
Giải thích các bước giải: Ta có: \(\begin{array}{l}f,\\\dfrac{{2\left( {x + 1} \right)}}{3} – 1 = \dfrac{3}{2} – \dfrac{{1 – 2x}}{4}\\ \Leftrightarrow \dfrac{2}{3}x + \dfrac{2}{3} – 1 = \dfrac{3}{2} – \left( {\dfrac{1}{4} – \dfrac{1}{2}x} \right)\\ \Leftrightarrow \dfrac{2}{3}x – \dfrac{1}{3} = \dfrac{3}{2} – \dfrac{1}{4} + \dfrac{1}{2}x\\ \Leftrightarrow \dfrac{2}{3}x – \dfrac{1}{2}x = \dfrac{3}{2} – \dfrac{1}{4} + \dfrac{1}{3}\\ \Leftrightarrow \dfrac{1}{6}x = \dfrac{{19}}{{12}}\\ \Leftrightarrow x = \dfrac{{19}}{2}\\g,\\\dfrac{{3\left( {x + 1} \right)}}{{10}} = \dfrac{{2.\left( {x – 1} \right)}}{3} + \dfrac{4}{5}\\ \Leftrightarrow \dfrac{{3\left( {x + 1} \right)}}{{10}} = \dfrac{{10.\left( {x – 1} \right) + 12}}{{15}}\\ \Leftrightarrow \dfrac{{3\left( {x + 1} \right)}}{{10}} = \dfrac{{10x + 2}}{{15}}\\ \Leftrightarrow 3.\left( {x + 1} \right).15 = 10.\left( {10x + 2} \right)\\ \Leftrightarrow 3.\left( {x + 1} \right).3 = 2.\left( {10x + 2} \right)\\ \Leftrightarrow 9\left( {x + 1} \right) = 2.\left( {10x + 2} \right)\\ \Leftrightarrow 9x + 9 = 20x + 4\\ \Leftrightarrow 9 – 4 = 20x – 9x\\ \Leftrightarrow 5 = 11x\\ \Leftrightarrow x = \dfrac{5}{{11}}\\h,\\{x^2} – x – 2 = 0\\ \Leftrightarrow \left( {{x^2} – 2x} \right) + \left( {x – 2} \right) = 0\\ \Leftrightarrow x\left( {x – 2} \right) + \left( {x – 2} \right) = 0\\ \Leftrightarrow \left( {x – 2} \right)\left( {x + 1} \right) = 0\\ \Leftrightarrow \left[ \begin{array}{l}x – 2 = 0\\x + 1 = 0\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = 2\\x = – 1\end{array} \right.\end{array}\) Bình luận
Giải thích các bước giải:
Ta có:
\(\begin{array}{l}
f,\\
\dfrac{{2\left( {x + 1} \right)}}{3} – 1 = \dfrac{3}{2} – \dfrac{{1 – 2x}}{4}\\
\Leftrightarrow \dfrac{2}{3}x + \dfrac{2}{3} – 1 = \dfrac{3}{2} – \left( {\dfrac{1}{4} – \dfrac{1}{2}x} \right)\\
\Leftrightarrow \dfrac{2}{3}x – \dfrac{1}{3} = \dfrac{3}{2} – \dfrac{1}{4} + \dfrac{1}{2}x\\
\Leftrightarrow \dfrac{2}{3}x – \dfrac{1}{2}x = \dfrac{3}{2} – \dfrac{1}{4} + \dfrac{1}{3}\\
\Leftrightarrow \dfrac{1}{6}x = \dfrac{{19}}{{12}}\\
\Leftrightarrow x = \dfrac{{19}}{2}\\
g,\\
\dfrac{{3\left( {x + 1} \right)}}{{10}} = \dfrac{{2.\left( {x – 1} \right)}}{3} + \dfrac{4}{5}\\
\Leftrightarrow \dfrac{{3\left( {x + 1} \right)}}{{10}} = \dfrac{{10.\left( {x – 1} \right) + 12}}{{15}}\\
\Leftrightarrow \dfrac{{3\left( {x + 1} \right)}}{{10}} = \dfrac{{10x + 2}}{{15}}\\
\Leftrightarrow 3.\left( {x + 1} \right).15 = 10.\left( {10x + 2} \right)\\
\Leftrightarrow 3.\left( {x + 1} \right).3 = 2.\left( {10x + 2} \right)\\
\Leftrightarrow 9\left( {x + 1} \right) = 2.\left( {10x + 2} \right)\\
\Leftrightarrow 9x + 9 = 20x + 4\\
\Leftrightarrow 9 – 4 = 20x – 9x\\
\Leftrightarrow 5 = 11x\\
\Leftrightarrow x = \dfrac{5}{{11}}\\
h,\\
{x^2} – x – 2 = 0\\
\Leftrightarrow \left( {{x^2} – 2x} \right) + \left( {x – 2} \right) = 0\\
\Leftrightarrow x\left( {x – 2} \right) + \left( {x – 2} \right) = 0\\
\Leftrightarrow \left( {x – 2} \right)\left( {x + 1} \right) = 0\\
\Leftrightarrow \left[ \begin{array}{l}
x – 2 = 0\\
x + 1 = 0
\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}
x = 2\\
x = – 1
\end{array} \right.
\end{array}\)