$\frac{1}{(x+1)(x+2)}$ + $\frac{1}{(x+2)(x+3)}$ + … + $\frac{1}{(x+7)(x+8)}$ = $\frac{1}{14}$ Help

$\frac{1}{(x+1)(x+2)}$ + $\frac{1}{(x+2)(x+3)}$ + … + $\frac{1}{(x+7)(x+8)}$ = $\frac{1}{14}$
Help

0 bình luận về “$\frac{1}{(x+1)(x+2)}$ + $\frac{1}{(x+2)(x+3)}$ + … + $\frac{1}{(x+7)(x+8)}$ = $\frac{1}{14}$ Help”

  1. 1/(x+1)(x+2) + … + 1/(x+7)(x+8) = 1/14

    1/(x+1) – 1/(x+2) +1/(x+2) – 1/(x+3) +…+1/(x+7) – 1/(x+8) = 1/14

    1/(x+1) – 1/(x+8) =1/14

    7/(x+1)(x+8) = 1/14

    x²+9x-90=0

    x=6 hoặc x=-15

    Bình luận
  2. $\dfrac{1}{(x+1)(x+2)}+\dfrac{1}{(x+2)(x+3)}+…+\dfrac{1}{(x+7)(x+8)}=\dfrac{1}{14}$ ($x\ne -1;-2;…;-8$)

    $↔\dfrac{1}{x+1}-\dfrac{1}{x+2}+\dfrac{1}{x+2}-\dfrac{1}{x+3}+…+\dfrac{1}{x+7}-\dfrac{1}{x+8}=\dfrac{1}{14}$

    $↔\dfrac{1}{x+1}-\dfrac{1}{x+8}=\dfrac{1}{14}$

    $↔\dfrac{x+8-x-1}{(x+1)(x+8)}=\dfrac{(x+1)(x+8)}{14(x+1)(x+8)}$

    $↔98=x²+9x+8$

    $↔0=x²+9x-90$

    $↔0=(x-6)(x+15)$

    $↔x-6=0\quad or\quad x+15=0$

    $↔x=6(TM)\quad or\quad x=-15(TM)$

    Bình luận

Viết một bình luận