$\frac{x1}{2.4}$ + $\frac{1}{4.6}$+ $\frac{1}{6.8}$ +…+ $\frac{1}{2016.2018}$ 27/09/2021 Bởi Josie $\frac{x1}{2.4}$ + $\frac{1}{4.6}$+ $\frac{1}{6.8}$ +…+ $\frac{1}{2016.2018}$
`\frac{1}{2.4} + \frac{1}{4.6} +\frac{1}{6.8} + … + \frac{1}{2016.2018}` `= \frac{1}{2}( \frac{1}{2} – \frac{1}{4} + \frac{1}{4} – \frac{1}{6} + \frac{1}{6} – \frac{1}{8} + … + \frac{1}{2016} – \frac{1}{2018} ` `= \frac{1}{2}( \frac{1}{2} – \frac{1}{2018} ) ` `= \frac{1}{2} . \frac{1008}{2018} ` `= \frac{504}{2018} = \frac{252}{1009}` Bình luận
$\text{Đáp án + Giải thích các bước giải:}$ `\text{Đặt}` `(1)/(2.4)+(1)/(4.6)+(1)/(6.8)+…+(1)/(2016.2018)=A` `\text{Ta có :}` `A=(1)/(2.4)+(1)/(4.6)+(1)/(6.8)+…+(1)/(2016.2018)` `=>2A=(2)/(2.4)+(2)/(4.6)+(2)/(6.8)+…+(2)/(2016.2018)` `=>2A=(1)/(2)-(1)/(4)+(1)/(4)-(1)/(6)+(1)/(6)-(1)/(8)+….+(1)/(2016)-(1)/(2018)` `=>2A=(1)/(2)-(1)/(2018)` `=>2A=(504)/(1009)` `=>A=(252)/(1009)` $\text{Vậy}$ `(1)/(2.4)+(1)/(4.6)+(1)/(6.8)+…+(1)/(2016.2018)=(252)/(1009)` Bình luận
`\frac{1}{2.4} + \frac{1}{4.6} +\frac{1}{6.8} + … + \frac{1}{2016.2018}`
`= \frac{1}{2}( \frac{1}{2} – \frac{1}{4} + \frac{1}{4} – \frac{1}{6} + \frac{1}{6} – \frac{1}{8} + … + \frac{1}{2016} – \frac{1}{2018} `
`= \frac{1}{2}( \frac{1}{2} – \frac{1}{2018} ) `
`= \frac{1}{2} . \frac{1008}{2018} `
`= \frac{504}{2018} = \frac{252}{1009}`
$\text{Đáp án + Giải thích các bước giải:}$
`\text{Đặt}` `(1)/(2.4)+(1)/(4.6)+(1)/(6.8)+…+(1)/(2016.2018)=A`
`\text{Ta có :}`
`A=(1)/(2.4)+(1)/(4.6)+(1)/(6.8)+…+(1)/(2016.2018)`
`=>2A=(2)/(2.4)+(2)/(4.6)+(2)/(6.8)+…+(2)/(2016.2018)`
`=>2A=(1)/(2)-(1)/(4)+(1)/(4)-(1)/(6)+(1)/(6)-(1)/(8)+….+(1)/(2016)-(1)/(2018)`
`=>2A=(1)/(2)-(1)/(2018)`
`=>2A=(504)/(1009)`
`=>A=(252)/(1009)`
$\text{Vậy}$ `(1)/(2.4)+(1)/(4.6)+(1)/(6.8)+…+(1)/(2016.2018)=(252)/(1009)`