$\frac{x+1}{x-2}$ -$\frac{x-1}{x+2}$ =$\frac{2(x^2+2)}{x^2-4}$

$\frac{x+1}{x-2}$ -$\frac{x-1}{x+2}$ =$\frac{2(x^2+2)}{x^2-4}$

0 bình luận về “$\frac{x+1}{x-2}$ -$\frac{x-1}{x+2}$ =$\frac{2(x^2+2)}{x^2-4}$”

  1. `(x+1)/(x-2)-(x-1)/(x+2)=(2(x^2+2))/(x^2-4)` ĐKXĐ: `x\ne2;x\ne-2`

    `<=>frac{(x+1)(x+2)}{(x-2)(x+2)}-frac{(x-1)(x-2)}{(x+2)(x-2)}=frac{2x^2+4}{(x-2)(x+2)}`

    `=>(x+1)(x+2)-(x-1)(x-2)=2x^2+4`

    `<=>x^2+2x+x+2-(x^2-2x-x+2)=2x^2+4`

    `<=>x^2+3x+2-x^2+3x-2=2x^2+4`

    `<=>6x=2x^2+4`

    `<=>2x^2-6x+4=0`

    `<=>2x^2-2x-4x+4=0`

    `<=>(2x^2-2x)-(4x-4)=0`

    `<=>2x(x-1)-4(x-1)=0`

    `<=>(x-1)(2x-4)=0`

    `<=>` \(\left[ \begin{array}{l}x-1=0\\2x-4=0\end{array} \right.\) `<=>` \(\left[ \begin{array}{l}x=1\\2x=4\end{array} \right.\) `<=>` \(\left[ \begin{array}{l}x=1(TMĐK)\\x=2(KTMĐK)\end{array} \right.\)

    Vậy phương trình trên có nghiệm `S={1}`

    Bình luận
  2. Đáp án:

    `S={1}` 

    Giải thích các bước giải:

    ĐKXĐ: \(\begin{cases}x\neq2\\x\neq-2\\\end{cases}\)

    \(\dfrac{x+1}{x-2}-\dfrac{x-1}{x+2}=\dfrac{2(x^2+2)}{x^2-4}\\\Leftrightarrow \dfrac{(x+1)(x+2)-(x-1)(x-2)}{(x-2)(x+2)}=\dfrac{2x^2+4}{(x-2)(x+2)}\\\Rightarrow (x+1)(x+2)-(x-1)(x-2)=2x^2+4\\\Leftrightarrow x^2+3x+2-(x^2-3x+2)=2x^2+4\\\Leftrightarrow x^2+3x+2-x^2+3x-2-2x^2-4=0\\\Leftrightarrow -2x^2+6x-4=0\\\Leftrightarrow -2x^2+2x+4x-4=0\\\Leftrightarrow -2x(x-1)+4(x-1)=0\\\Leftrightarrow (x-1)(-2x+4)=0\\\Leftrightarrow \left[ \begin{array}{l}x-1=0\\-2x+4=0\end{array} \right.\\\Leftrightarrow \left[ \begin{array}{l}x=1\\-2x=-4\end{array} \right.\\\Leftrightarrow \left[ \begin{array}{l}x=1\,\,(tmđk)\\x=2\,\,(ktmđk)\end{array} \right.\)

    Vậy `S={1}`

    Bình luận

Viết một bình luận