$x:\frac{1}{2}+$ $x:\frac{1}{4}+$ $x:\frac{1}{8}+…+$ $x:\frac{1}{512}=511$ 28/07/2021 Bởi Cora $x:\frac{1}{2}+$ $x:\frac{1}{4}+$ $x:\frac{1}{8}+…+$ $x:\frac{1}{512}=511$
Đáp án: Giải thích các bước giải: \(x:\dfrac{1}{2}+x:\dfrac{1}{4}+x:\dfrac{1}{8}+…+x:\dfrac{1}{512}=511\\ 2x+4x+8x+..+512x=511\\ x\left(2+4+8+…+512\right)=511\\ x\left(2^1+2^2+2^3+…+2^9\right)=511\\ \) Gọi \(S=2^1+2^2+2^3+…+2^9\) \(2S=2^2+2^3+2^4+…+2^{10}\\ 2S-S=\left(2^2+2^3+2^4+…+2^{10}\right)-\left(2^1+2^2+2^3+…+2^9\right)\\ S=2^{10}-2\) \(x\left(2^{10}-2\right)=511\\ 2x\left(2^9-1\right)=511\\ 2x\left(512-1\right)=511\\ 2x\cdot511=511\\ 2x=1\\ x=\dfrac{1}{2}\) Vậy \(x=\dfrac{1}{2}\) Bình luận
Đáp án: …. Giải thích các bước giải: $x:\frac{1}{2}+x:$ $\frac{1}{4}+x:$ $\frac{1}{8}+…+$ $x:\frac{1}{512}=511$ $x.2+x.4+x.8+…+x.512=511$ $x(2+4+8+…+512)=511$ $x(2+2^2+2^2.2+…+2^2.2^7)=511$ $x[2+{2^2.(1+2+…+2^7)}]=511$ $x[2+{2^2(1+2^8))}]=511$ $x[2+{2^2.257}]=511$ $x[2+1028]=511$ $x.1030=511$ $x=\frac{511}{1030}$ #Học tốt Bình luận
Đáp án:
Giải thích các bước giải:
\(x:\dfrac{1}{2}+x:\dfrac{1}{4}+x:\dfrac{1}{8}+…+x:\dfrac{1}{512}=511\\ 2x+4x+8x+..+512x=511\\ x\left(2+4+8+…+512\right)=511\\ x\left(2^1+2^2+2^3+…+2^9\right)=511\\ \)
Gọi \(S=2^1+2^2+2^3+…+2^9\)
\(2S=2^2+2^3+2^4+…+2^{10}\\ 2S-S=\left(2^2+2^3+2^4+…+2^{10}\right)-\left(2^1+2^2+2^3+…+2^9\right)\\ S=2^{10}-2\)
\(x\left(2^{10}-2\right)=511\\ 2x\left(2^9-1\right)=511\\ 2x\left(512-1\right)=511\\ 2x\cdot511=511\\ 2x=1\\ x=\dfrac{1}{2}\)
Vậy \(x=\dfrac{1}{2}\)
Đáp án:
….
Giải thích các bước giải:
$x:\frac{1}{2}+x:$ $\frac{1}{4}+x:$ $\frac{1}{8}+…+$ $x:\frac{1}{512}=511$
$x.2+x.4+x.8+…+x.512=511$
$x(2+4+8+…+512)=511$
$x(2+2^2+2^2.2+…+2^2.2^7)=511$
$x[2+{2^2.(1+2+…+2^7)}]=511$
$x[2+{2^2(1+2^8))}]=511$
$x[2+{2^2.257}]=511$
$x[2+1028]=511$
$x.1030=511$
$x=\frac{511}{1030}$
#Học tốt