$\frac{1-2cos^{2}∝}{1+2 sin∝ cos∝}$ $\frac{sin∝-cos∝}{sin∝+cos∝}$ ∝ 15/07/2021 Bởi Skylar $\frac{1-2cos^{2}∝}{1+2 sin∝ cos∝}$ $\frac{sin∝-cos∝}{sin∝+cos∝}$ ∝
Giải thích các bước giải: Ta có: \(\begin{array}{l}{\sin ^2}x + {\cos ^2}x = 1\\\dfrac{{1 – 2{{\cos }^2}\alpha }}{{1 + 2\sin \alpha .\cos \alpha }}.\dfrac{{\sin \alpha – cos\alpha }}{{\sin \alpha + \cos \alpha }}\\ = \dfrac{{\left( {{{\sin }^2}\alpha + {{\cos }^2}\alpha } \right) – 2{{\cos }^2}\alpha }}{{\left( {{{\sin }^2}\alpha + {{\cos }^2}\alpha } \right) + 2\sin \alpha .\cos \alpha }}.\dfrac{{\sin \alpha – \cos \alpha }}{{\sin \alpha + \cos \alpha }}\\ = \dfrac{{{{\sin }^2}\alpha – {{\cos }^2}\alpha }}{{{{\sin }^2}\alpha + 2.\sin \alpha .\cos \alpha + {{\cos }^2}\alpha }}.\dfrac{{\sin \alpha – \cos \alpha }}{{\sin \alpha + \cos \alpha }}\\ = \dfrac{{\left( {\sin \alpha – \cos \alpha } \right).\left( {\sin \alpha + \cos \alpha } \right)}}{{{{\left( {\sin \alpha + \cos \alpha } \right)}^2}}}.\dfrac{{\sin \alpha – \cos \alpha }}{{\sin \alpha + \cos \alpha }}\\ = \dfrac{{{{\left( {\sin \alpha – \cos \alpha } \right)}^2}.\left( {\sin \alpha + \cos \alpha } \right)}}{{{{\left( {\sin \alpha + \cos \alpha } \right)}^3}}}\\ = {\left( {\dfrac{{\sin \alpha – \cos \alpha }}{{\sin \alpha + \cos \alpha }}} \right)^2}\end{array}\) Bình luận
Giải thích các bước giải:
Ta có:
\(\begin{array}{l}
{\sin ^2}x + {\cos ^2}x = 1\\
\dfrac{{1 – 2{{\cos }^2}\alpha }}{{1 + 2\sin \alpha .\cos \alpha }}.\dfrac{{\sin \alpha – cos\alpha }}{{\sin \alpha + \cos \alpha }}\\
= \dfrac{{\left( {{{\sin }^2}\alpha + {{\cos }^2}\alpha } \right) – 2{{\cos }^2}\alpha }}{{\left( {{{\sin }^2}\alpha + {{\cos }^2}\alpha } \right) + 2\sin \alpha .\cos \alpha }}.\dfrac{{\sin \alpha – \cos \alpha }}{{\sin \alpha + \cos \alpha }}\\
= \dfrac{{{{\sin }^2}\alpha – {{\cos }^2}\alpha }}{{{{\sin }^2}\alpha + 2.\sin \alpha .\cos \alpha + {{\cos }^2}\alpha }}.\dfrac{{\sin \alpha – \cos \alpha }}{{\sin \alpha + \cos \alpha }}\\
= \dfrac{{\left( {\sin \alpha – \cos \alpha } \right).\left( {\sin \alpha + \cos \alpha } \right)}}{{{{\left( {\sin \alpha + \cos \alpha } \right)}^2}}}.\dfrac{{\sin \alpha – \cos \alpha }}{{\sin \alpha + \cos \alpha }}\\
= \dfrac{{{{\left( {\sin \alpha – \cos \alpha } \right)}^2}.\left( {\sin \alpha + \cos \alpha } \right)}}{{{{\left( {\sin \alpha + \cos \alpha } \right)}^3}}}\\
= {\left( {\dfrac{{\sin \alpha – \cos \alpha }}{{\sin \alpha + \cos \alpha }}} \right)^2}
\end{array}\)