$\frac{1}{3}$-$\frac{1}{3^{2} }$ +$\frac{1}{3^{3} }$ -…-$\frac{1}{3^{100} }$

$\frac{1}{3}$-$\frac{1}{3^{2} }$ +$\frac{1}{3^{3} }$ -…-$\frac{1}{3^{100} }$

0 bình luận về “$\frac{1}{3}$-$\frac{1}{3^{2} }$ +$\frac{1}{3^{3} }$ -…-$\frac{1}{3^{100} }$”

  1. Đặt `A=1/3-1/(3^2)+1/(3^(3))-….-1/(3^(100)`

    `3A=1-1/3+1/(3^2)-….-1/(3^(99))`

    `⇔3A+A=1-1/(3^(100))`

    `⇔4A=1-1/(3^(100))`

    `⇔A=1/4-1/(4×3^(100))`

     

    Bình luận
  2. Đặt `A= 1/3 – 1/3^2 + 1/3^3 -…- 1/3^100`

    `1/3 A= 1/3 ( 1/3 – 1/3^2 + 1/3^3-…- 1/3^100)`

    `1/3 A= 1/3^2 – 1/3^3 + 1/3^4-…-1/3^101`

    `A+ 1/3 A= 1/3 – 1/3^2 + 1/3^3 -…-1/3^100 + 1/3^2 – 1/3^3 + 1/3^4 -…-1/3^101`

    `4/3 A = 1/3 – 1/3^101`

    `A= (1/3 – 1/3^101): 4/3`

    `A= (1/3 – 1/3^101) . 3/4`

    `A= 1/4 – 1/(3^100 .4)`

    Vậy `A= 1/4 – 1/(3^100 .4)`

    Bình luận

Viết một bình luận