(x+ $ \frac{1}{5}) ^{2}$ + $\frac{17}{25}$ = $\frac{26}{25}$ 23/08/2021 Bởi Maya (x+ $ \frac{1}{5}) ^{2}$ + $\frac{17}{25}$ = $\frac{26}{25}$
Đáp án: Giải thích các bước giải: $(x+\frac{1}{5})^{2}$ + $\frac{17}{25}$= $\frac{26}{25}$ ⇒ $(x+\frac{1}{5})^{2}$ = $\frac{26}{25}$ – $\frac{17}{25}$ ⇒ $(x+\frac{1}{5})^{2}$ = $\frac{9}{25}$ ⇒ | $x+\frac{1}{5}$ | = ±$\frac{3}{5}$ +, $x+\frac{1}{5}$ = $\frac{3}{5}$ ⇒ x = $\frac{3}{5}$ – $\frac{1}{5}$ ⇒ x = $\frac{2}{5}$ +, $x+\frac{1}{5}$ = $-\frac{3}{5}$ ⇒ x = $-\frac{3}{5}$ – $\frac{1}{5}$ ⇒ x = $\frac{-4}{5}$ Vậy : x = $\frac{2}{5}$; x = $\frac{-4}{5}$ Bình luận
(x + $\frac{1}{5}$)² + $\frac{17}{25}$ = $\frac{26}{25}$ (x + $\frac{1}{5}$)² = $\frac{26}{25}$ – $\frac{17}{25}$ (x + $\frac{1}{5}$)² = $\frac{9}{25}$ \(\left[ \begin{array}{l}x+\frac{1}{5} = \frac{3}{5} \\x+\frac{1}{5} = \frac{-3}{5}\end{array} \right.\) \(\left[ \begin{array}{l}x=\frac{3}{5} – \frac{1}{5}\\x=\frac{-3}{5} – \frac{1}{5}\end{array} \right.\) \(\left[ \begin{array}{l}x=\frac{2}{5}\\x=\frac{-4}{5}\end{array} \right.\) Vậy x = $\frac{2}{5}$ hoặc x = $\frac{-4}{5}$ Bình luận
Đáp án:
Giải thích các bước giải:
$(x+\frac{1}{5})^{2}$ + $\frac{17}{25}$= $\frac{26}{25}$
⇒ $(x+\frac{1}{5})^{2}$ = $\frac{26}{25}$ – $\frac{17}{25}$
⇒ $(x+\frac{1}{5})^{2}$ = $\frac{9}{25}$
⇒ | $x+\frac{1}{5}$ | = ±$\frac{3}{5}$
+, $x+\frac{1}{5}$ = $\frac{3}{5}$
⇒ x = $\frac{3}{5}$ – $\frac{1}{5}$
⇒ x = $\frac{2}{5}$
+, $x+\frac{1}{5}$ = $-\frac{3}{5}$
⇒ x = $-\frac{3}{5}$ – $\frac{1}{5}$
⇒ x = $\frac{-4}{5}$
Vậy : x = $\frac{2}{5}$; x = $\frac{-4}{5}$
(x + $\frac{1}{5}$)² + $\frac{17}{25}$ = $\frac{26}{25}$
(x + $\frac{1}{5}$)² = $\frac{26}{25}$ – $\frac{17}{25}$
(x + $\frac{1}{5}$)² = $\frac{9}{25}$
\(\left[ \begin{array}{l}x+\frac{1}{5} = \frac{3}{5} \\x+\frac{1}{5} = \frac{-3}{5}\end{array} \right.\)
\(\left[ \begin{array}{l}x=\frac{3}{5} – \frac{1}{5}\\x=\frac{-3}{5} – \frac{1}{5}\end{array} \right.\)
\(\left[ \begin{array}{l}x=\frac{2}{5}\\x=\frac{-4}{5}\end{array} \right.\)
Vậy x = $\frac{2}{5}$ hoặc x = $\frac{-4}{5}$