$\frac{1000}{1009}$ . $\frac{-2018}{2019}$ + $\frac{19}{2018}$ . $\frac{-2018}{2019}$ + $\frac{1}{2020}$

$\frac{1000}{1009}$ . $\frac{-2018}{2019}$ + $\frac{19}{2018}$ . $\frac{-2018}{2019}$ + $\frac{1}{2020}$

0 bình luận về “$\frac{1000}{1009}$ . $\frac{-2018}{2019}$ + $\frac{19}{2018}$ . $\frac{-2018}{2019}$ + $\frac{1}{2020}$”

  1. `\frac{1000}{1009} . \frac{-2018}{2019} + \frac{19}{2018} . \frac{-2018}{2019} +\frac{1}{2020}`

    `=1000. \frac{-2}{2019} + 19 . \frac{-1}{2019} + \frac{1}{2020}`

    `= \frac{-2020}{2019} + \frac{-19}{2019} + \frac{1}{2020}`

    `= \frac{-2019}{2019} + \frac{1}{2020}`

    `=-1 + \frac{1}{2020}`

    `=\frac{-2019}{2020}`

    Bình luận
  2. Đáp án:

    $\frac{-2019}{2020}$

    Giải thích các bước giải:

    $\frac{1000}{1009}.\frac{-2018}{2019} + \frac{19}{2018}.\frac{-2018}{2019} + \frac{1}{2020}$

    $=\frac{1000.(-2018)}{1009.2019} +\frac{19.(-2018)}{2018.2019} + \frac{1}{2020}$

    $= \frac{1000.(-2)}{2019}+\frac{19.(-1)}{2019}+\frac{1}{2020}$

    $= \frac{-2000}{2019} + \frac{-19}{2019} + \frac{1}{2020}$

    $= \frac{-2000 – 19}{2019} + \frac{1}{2020}$

    $= \frac{-2019}{2019} + \frac{1}{2020}$

    $= – 1 + \frac{1}{2020}$

    $= \frac{-2020 + 1}{2020}$

    $= \frac{-2019}{2020}$

    Bình luận

Viết một bình luận