$\frac{1000}{1009}$ . $\frac{-2018}{2019}$ + $\frac{19}{2018}$ . $\frac{-2018}{2019}$ + $\frac{1}{2020}$ 27/10/2021 Bởi Arya $\frac{1000}{1009}$ . $\frac{-2018}{2019}$ + $\frac{19}{2018}$ . $\frac{-2018}{2019}$ + $\frac{1}{2020}$
`\frac{1000}{1009} . \frac{-2018}{2019} + \frac{19}{2018} . \frac{-2018}{2019} +\frac{1}{2020}` `=1000. \frac{-2}{2019} + 19 . \frac{-1}{2019} + \frac{1}{2020}` `= \frac{-2020}{2019} + \frac{-19}{2019} + \frac{1}{2020}` `= \frac{-2019}{2019} + \frac{1}{2020}` `=-1 + \frac{1}{2020}` `=\frac{-2019}{2020}` Bình luận
Đáp án: $\frac{-2019}{2020}$ Giải thích các bước giải: $\frac{1000}{1009}.\frac{-2018}{2019} + \frac{19}{2018}.\frac{-2018}{2019} + \frac{1}{2020}$ $=\frac{1000.(-2018)}{1009.2019} +\frac{19.(-2018)}{2018.2019} + \frac{1}{2020}$ $= \frac{1000.(-2)}{2019}+\frac{19.(-1)}{2019}+\frac{1}{2020}$ $= \frac{-2000}{2019} + \frac{-19}{2019} + \frac{1}{2020}$ $= \frac{-2000 – 19}{2019} + \frac{1}{2020}$ $= \frac{-2019}{2019} + \frac{1}{2020}$ $= – 1 + \frac{1}{2020}$ $= \frac{-2020 + 1}{2020}$ $= \frac{-2019}{2020}$ Bình luận
`\frac{1000}{1009} . \frac{-2018}{2019} + \frac{19}{2018} . \frac{-2018}{2019} +\frac{1}{2020}`
`=1000. \frac{-2}{2019} + 19 . \frac{-1}{2019} + \frac{1}{2020}`
`= \frac{-2020}{2019} + \frac{-19}{2019} + \frac{1}{2020}`
`= \frac{-2019}{2019} + \frac{1}{2020}`
`=-1 + \frac{1}{2020}`
`=\frac{-2019}{2020}`
Đáp án:
$\frac{-2019}{2020}$
Giải thích các bước giải:
$\frac{1000}{1009}.\frac{-2018}{2019} + \frac{19}{2018}.\frac{-2018}{2019} + \frac{1}{2020}$
$=\frac{1000.(-2018)}{1009.2019} +\frac{19.(-2018)}{2018.2019} + \frac{1}{2020}$
$= \frac{1000.(-2)}{2019}+\frac{19.(-1)}{2019}+\frac{1}{2020}$
$= \frac{-2000}{2019} + \frac{-19}{2019} + \frac{1}{2020}$
$= \frac{-2000 – 19}{2019} + \frac{1}{2020}$
$= \frac{-2019}{2019} + \frac{1}{2020}$
$= – 1 + \frac{1}{2020}$
$= \frac{-2020 + 1}{2020}$
$= \frac{-2019}{2020}$