$\frac{x+2}{x+1}$+$\frac{2}{y-2}$=6 $\frac{5}{x+1}$-$\frac{1}{y-2}$ =3

$\frac{x+2}{x+1}$+$\frac{2}{y-2}$=6
$\frac{5}{x+1}$-$\frac{1}{y-2}$ =3

0 bình luận về “$\frac{x+2}{x+1}$+$\frac{2}{y-2}$=6 $\frac{5}{x+1}$-$\frac{1}{y-2}$ =3”

  1. Đáp án:

    $\begin{array}{l}
    \left\{ \begin{array}{l}
    \frac{{x + 2}}{{x + 1}} + \frac{2}{{y – 2}} = 6\\
    \frac{5}{{x + 1}} – \frac{1}{{y – 2}} = 3
    \end{array} \right. \Rightarrow \left\{ \begin{array}{l}
    1 + \frac{1}{{x + 1}} + \frac{2}{{y – 2}} = 6\\
    5.\frac{1}{{x + 1}} – \frac{1}{{y – 2}} = 3
    \end{array} \right.\\
     \Rightarrow \left\{ \begin{array}{l}
    \frac{1}{{x + 1}} + 2.\frac{1}{{y – 2}} = 5\\
    5.\frac{1}{{x + 1}} – \frac{1}{{y – 2}} = 3
    \end{array} \right. \Rightarrow \left\{ \begin{array}{l}
    \frac{1}{{x + 1}} = 1\\
    \frac{1}{{y – 2}} = 2
    \end{array} \right.\\
     \Rightarrow \left\{ \begin{array}{l}
    x + 1 = 1\\
    y – 2 = \frac{1}{2}
    \end{array} \right. \Rightarrow \left\{ \begin{array}{l}
    x = 0\\
    y = \frac{5}{2}
    \end{array} \right.
    \end{array}$

    Bình luận

Viết một bình luận