$\frac{x-2}{x+2}$ – $\frac{3}{x-2}$ = $\frac{2.(x-11)}{x^2-4}$ 20/11/2021 Bởi Amara $\frac{x-2}{x+2}$ – $\frac{3}{x-2}$ = $\frac{2.(x-11)}{x^2-4}$
$\frac{x-2}{x+2}$ -$\frac{3}{x-2}$ =$\frac{2(x-11)}{x^{2}-4}$ ĐKXĐ: x$\neq$ 2, x$\neq$ -2 ⇒(x-2)(x-2)-3(x+2)=2(x-11) ⇔$x^{2}$ -2x-2x+4-3x-6=2x-22 ⇔$x^{2}$-2x-2x-3x-2x=-22-4+6 ⇔$x^{2}$-9x=-20 ⇔$x^{2}$-9x+20=0 ⇔$x^{2}$-4x-5x+20=0 ⇔x(x-4)-5(x-2)=0 ⇔(x-5)(x-4)=0 ⇔\(\left[ \begin{array}{l}x-5=0\\x-4=0\end{array} \right.\) ⇔\(\left[ \begin{array}{l}x=5(nhận)\\x=4(nhận)\end{array} \right.\) vậy pt có tập nghiệm S=(4;5) Bình luận
ĐK: x$\neq$ ±2 $\frac{x-2}{x+2}$ – $\frac{3}{x-2}$ =$\frac{2.(x-11)}{x²-4}$ ⇔ (x-2)² -3(x+2)= 2(x-11) ⇔x² -4x+4 -3x-6= 2x-22 ⇔x² -9x+20 =0 ⇔x²-4x-5x+20=0 ⇔ x(x-4)-5(x-4)=0 ⇔(x-4)(x-5)=0 ⇔\(\left[ \begin{array}{l}x-4=0\\x-5=0\end{array} \right.\) ⇔\(\left[ \begin{array}{l}x=4\\x=5\end{array} \right.\) Bình luận
$\frac{x-2}{x+2}$ -$\frac{3}{x-2}$ =$\frac{2(x-11)}{x^{2}-4}$ ĐKXĐ: x$\neq$ 2, x$\neq$ -2
⇒(x-2)(x-2)-3(x+2)=2(x-11)
⇔$x^{2}$ -2x-2x+4-3x-6=2x-22
⇔$x^{2}$-2x-2x-3x-2x=-22-4+6
⇔$x^{2}$-9x=-20
⇔$x^{2}$-9x+20=0
⇔$x^{2}$-4x-5x+20=0
⇔x(x-4)-5(x-2)=0
⇔(x-5)(x-4)=0
⇔\(\left[ \begin{array}{l}x-5=0\\x-4=0\end{array} \right.\)
⇔\(\left[ \begin{array}{l}x=5(nhận)\\x=4(nhận)\end{array} \right.\)
vậy pt có tập nghiệm S=(4;5)
ĐK: x$\neq$ ±2
$\frac{x-2}{x+2}$ – $\frac{3}{x-2}$ =$\frac{2.(x-11)}{x²-4}$
⇔ (x-2)² -3(x+2)= 2(x-11)
⇔x² -4x+4 -3x-6= 2x-22
⇔x² -9x+20 =0
⇔x²-4x-5x+20=0
⇔ x(x-4)-5(x-4)=0
⇔(x-4)(x-5)=0
⇔\(\left[ \begin{array}{l}x-4=0\\x-5=0\end{array} \right.\)
⇔\(\left[ \begin{array}{l}x=4\\x=5\end{array} \right.\)