$\frac{-5}{8}$ × $\sqrt[]{100/49}$ -2.5 × $\frac{2^2}{5}$ +(( $\frac{-1}{5}$)$^{217}$ ÷( $\frac{-1}{5}$)$^{215}$) ÷ $\frac{3}{5}$

$\frac{-5}{8}$ × $\sqrt[]{100/49}$ -2.5 × $\frac{2^2}{5}$ +(( $\frac{-1}{5}$)$^{217}$ ÷( $\frac{-1}{5}$)$^{215}$) ÷ $\frac{3}{5}$

0 bình luận về “$\frac{-5}{8}$ × $\sqrt[]{100/49}$ -2.5 × $\frac{2^2}{5}$ +(( $\frac{-1}{5}$)$^{217}$ ÷( $\frac{-1}{5}$)$^{215}$) ÷ $\frac{3}{5}$”

  1. Đáp án: $\frac{-1187}{420}$

    Giải thích các bước giải:

    $\frac{-5}{8}$.$\sqrt[]{\frac{100}{49}}$ – $\frac{5}{2}$.$\frac{2^{2}}{5}$ + [$(\frac{-1}{5})^{217}$ : $(\frac{-1}{5})^{215}$] : $\frac{3}{5}$  

    = $\frac{-5}{8}$.$\frac{10}{7}$ – 2 + [$(\frac{-1}{5})^{217}$.$(-5)^{215}$].$\frac{5}{3}$  

    = $\frac{-25}{28}$ – 2 + $(\frac{-1}{5})^{2}$.$\frac{5}{3}$  

    = $\frac{-81}{28}$ + $\frac{1}{15}$

    = $\frac{-1187}{420}$

     

    Bình luận

Viết một bình luận