$\frac{sin^{2}4x}{2cosx +cos3x +cos5x}$ =2sinx.sin2x

$\frac{sin^{2}4x}{2cosx +cos3x +cos5x}$ =2sinx.sin2x

0 bình luận về “$\frac{sin^{2}4x}{2cosx +cos3x +cos5x}$ =2sinx.sin2x”

  1. Đáp án:

    $\begin{array}{l}
    2{\mathop{\rm cosx}\nolimits}  + cos3x + cos5x\\
     = 2cosx + 2.cos\dfrac{{3x + 5x}}{2}.\cos \dfrac{{3x – 5x}}{2}\\
     = 2.\cos x + 2.\cos 4x.\cos \left( { – x} \right)\\
     = 2.\cos x + 2.\cos x.\cos 4x\\
     = 2.\cos x.\left( {\cos 4x + 1} \right)\\
     = 2.\cos x.2.{\cos ^2}2x\\
     = 4.\cos x.{\cos ^2}2x\\
     \Rightarrow \dfrac{{{{\sin }^2}4x}}{{2{\mathop{\rm cosx}\nolimits}  + cos3x + cos5x}}\\
     = \dfrac{{{{\left( {2.\sin 2x.\cos 2x} \right)}^2}}}{{4.\cos x.{{\cos }^2}2x}}\\
     = \dfrac{{4.{{\sin }^2}2x.{{\cos }^2}2x}}{{4.\cos x.{{\cos }^2}2x}}\\
     = \dfrac{{{{\left( {2.\sin x.\cos x} \right)}^2}}}{{\cos x}}\\
     = 4.{\sin ^2}x.\cos x\\
     = 2.\sin x.2.\sin x.\cos x\\
     = 2.\sin x.sin2x
    \end{array}$

    Bình luận

Viết một bình luận