Gbpt 1)(√2-√3)x0 {4x-3. _____ < x+3 2 2) {2

Gbpt 1)(√2-√3)x0
{4x-3.
_____ < x+3 2 2) {2 1 ______ { "@context": "https://schema.org", "@type": "QAPage", "mainEntity": { "@type": "Question", "name": " Gbpt 1)(√2-√3)x 0 {4x-3. _____ < x+3 2 2) {2", "text": "Gbpt 1)(√2-√3)x 0 {4x-3. _____ < x+3 2 2) {2 1 ______

0 bình luận về “Gbpt 1)(√2-√3)x<bằng √3+√2 Ghpt 1 ) {(x-3)(√2-x)>0 {4x-3. _____ < x+3 2 2) {2”

  1. Giải thích các bước giải:

     Ta có:

    \(\begin{array}{l}
    1,\\
    \left( {\sqrt 2  – \sqrt 3 } \right)x \le \sqrt 3  + \sqrt 2 \\
    \sqrt 2  – \sqrt 3  < 0 \Rightarrow x \ge \frac{{\sqrt 3  + \sqrt 2 }}{{\sqrt 2  – \sqrt 3 }} \Leftrightarrow x \ge  – 5 – 2\sqrt 6 \\
    1,\\
    \left\{ \begin{array}{l}
    \left( {x – 3} \right)\left( {\sqrt 2  – x} \right) > 0\\
    \frac{{4x – 3}}{2} < x + 3
    \end{array} \right.\\
     \Leftrightarrow \left\{ \begin{array}{l}
    \left( {x – 3} \right)\left( {x – \sqrt 2 } \right) < 0\\
    2x – \frac{3}{2} < x + 3
    \end{array} \right.\\
     \Leftrightarrow \left\{ \begin{array}{l}
    \sqrt 2  < x < 3\\
    2x – x < 3 + \frac{3}{2}
    \end{array} \right.\\
     \Leftrightarrow \left\{ \begin{array}{l}
    \sqrt 2  < x < 3\\
    x < \frac{9}{2}
    \end{array} \right.\\
     \Leftrightarrow \sqrt 2  < x < 3\\
     \Rightarrow S = \left( {\sqrt 2 ;3} \right)\\
    2,\\
    \left\{ \begin{array}{l}
    \frac{2}{{2x – 1}} \le \frac{1}{{3 – x}}\\
    \left| x \right| < 1
    \end{array} \right.\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\left( \begin{array}{l}
    x \ne \frac{1}{2}\\
    x \ne 3
    \end{array} \right)\\
     \Leftrightarrow \left\{ \begin{array}{l}
    \frac{2}{{2x – 1}} – \frac{1}{{3 – x}} \le 0\\
    \left| x \right| < 1
    \end{array} \right.\\
     \Leftrightarrow \left\{ \begin{array}{l}
    \frac{{2\left( {3 – x} \right) – \left( {2x – 1} \right)}}{{\left( {2x – 1} \right)\left( {3 – x} \right)}} \le 0\\
     – 1 < x < 1
    \end{array} \right.\\
     \Leftrightarrow \left\{ \begin{array}{l}
    \frac{{7 – 4x}}{{\left( {2x – 1} \right)\left( {3 – x} \right)}} \le 0\\
     – 1 < x < 1
    \end{array} \right.\\
     \Leftrightarrow \left\{ \begin{array}{l}
    \frac{{4x – 7}}{{\left( {2x – 1} \right)\left( {x – 3} \right)}} \le 0\\
     – 1 < x < 1
    \end{array} \right.\\
     \Leftrightarrow \left\{ \begin{array}{l}
    \left[ \begin{array}{l}
    x < \frac{1}{2}\\
    \frac{7}{4} \le x < 3
    \end{array} \right.\\
     – 1 < x < 1
    \end{array} \right.\\
     \Leftrightarrow  – 1 < x < \frac{1}{2}\\
     \Rightarrow S = \left( { – 1;\frac{1}{2}} \right)
    \end{array}\)

    Bình luận

Viết một bình luận