Giả sử n là số tự nhien Hãy chứng minh `1/2 + 1/(3sqrt2) + … + 1/((n+1)sqrtn )<2`

By Eliza

Giả sử n là số tự nhien
Hãy chứng minh
`1/2 + 1/(3sqrt2) + … + 1/((n+1)sqrtn )<2`

0 bình luận về “Giả sử n là số tự nhien Hãy chứng minh `1/2 + 1/(3sqrt2) + … + 1/((n+1)sqrtn )<2`”

  1. Giải thích các bước giải:

    Xuất phát từ:` 1/((k+1)sqrtk) = sqrtk / ((k+1)k)`

    `= sqrtk * (1/sqrtk + 1/sqrt(k+1))(1/sqrtk+ 1/sqrt(k+1))`

    `= (1/sqrt(1/(k+1)))(1/sqrtk – 1/sqrt(k+1)) le 2(1/sqrtk – 1/sqrt(k+1))`

    `=> 1/((k+1 sqrtk)) < 2(1/sqrtk – 1/sqrt(k-1))` (1)

     Áp dụng bất đẳng thức (1) cho `k = 1,2,3,..,n` ta có:

    `1/2 < 2(1-1/sqrt2)`

    `1/(3sqrt2) < 2(1/sqrt2 – 1/sqrt3)`

    `+……..`

    `1/((n+1)sqrtn) < 2(1/sqrtn + 1/sqrt(n+1))`

    `1/2 + 1/(3sqrt2) + … + 1/((n+1)sqrtn )< 2(1-1/(sqrt(n+1))) <2`

    Trả lời
  2. Đáp án:

     

    Giải thích các bước giải:

    Đặt: Sn=1/(n+1)+1/(n+2)+..+1/(n+(2n+1)) 
    Ta dùng quy nạp để chứng minh S(n) > 1
    Với n = 1 thì S1 = 1/(1+1) + 1/(1+2) + 1/(1+3) = 13/12
    => 1 < S1 
    Ta giả sử Sn đúng đến n = k
    => 1 < 1/(k+1) + 1/(k+2) + …+ 1/(3k+1)) < 2
    Giờ ta chứng minh Sn đúng với n = k + 1
    Ta có: S(k+1) = 1/(k+2) + 1/(k+3) + … + 1/(3k+4)
    = (1/(k+1) + 1/(k+2) + …+ 1/(3k+1)) + (-1/(k+1) + 1/(3k+2) + 1/(3k+3) + 1/(3k+4))
    = S(k) – 1/(k+1) + 1/(3k+2) + 1/(3k+3) + 1/(3k+4) < S(k) <2

    Trả lời

Viết một bình luận