giải bất phương trình :
1) x ³ – 6x ² – 7x – 5 < (x-2) ³
2) x ²< (x+2) ²
3) 3 - 4x-1/18>x-1/12-4-5x/9
4)(2x-3)(x+3) ≥0
5)3x-1/4 – 3(x-2)/8-1>5-3x/2
giải bất phương trình :
1) x ³ – 6x ² – 7x – 5 < (x-2) ³
2) x ²< (x+2) ²
3) 3 - 4x-1/18>x-1/12-4-5x/9
4)(2x-3)(x+3) ≥0
5)3x-1/4 – 3(x-2)/8-1>5-3x/2
Đáp án:
5) \(x > \dfrac{8}{5}\)
Giải thích các bước giải:
\(\begin{array}{l}
1){x^3} – 6{x^2} – 7x – 5 < {\left( {x – 2} \right)^3}\\
\to {x^3} – 6{x^2} – 7x – 5 < {x^3} – 6{x^2} + 12x – 8\\
\to 19x > 3\\
\to x > \dfrac{3}{{19}}\\
2){x^2} < {x^2} + 4x + 4\\
\to 4x > – 4\\
\to x > – 1\\
3)3 – \dfrac{{4x – 1}}{{18}} > \dfrac{{x – 1}}{{12}} – \dfrac{{4 – 5x}}{9}\\
\to \dfrac{{3.36 – 2\left( {4x – 1} \right)}}{{36}} > \dfrac{{3\left( {x – 1} \right) – 4\left( {4 – 5x} \right)}}{{36}}\\
\to 108 – 8x + 2 > 3x – 3 – 16 + 20x\\
\to 31x < 129\\
\to x < \dfrac{{129}}{{31}}\\
4)\left( {2x – 3} \right)\left( {x + 3} \right) \ge 0\\
\to \left[ \begin{array}{l}
x \ge \dfrac{3}{2}\\
x \le – 3
\end{array} \right.\\
5)\dfrac{{3x – 1}}{4} – \dfrac{{3\left( {x – 2} \right)}}{8} – 1 > \dfrac{{5 – 3x}}{2}\\
\to 2\left( {3x – 1} \right) – 3x + 6 – 8 > 4\left( {5 – 3x} \right)\\
\to 6x – 2 – 3x – 2 > 20 – 12x\\
\to 15x > 24\\
\to x > \dfrac{8}{5}
\end{array}\)
`\text{~~Holi~~}`
`1.`
`x^3-6x^2-7x-5<(x-2)^3`
`-> x^2-6x^2-7x-5<x^3-6x^2+12x-8`
`-> -7x-5<12x-8`
`-> -7x-12x<-8+5`
`-> -19x<-3`
`-> x>3/(19)`
`2.`
`x^2<(x+2)^2`
`-> x^2<x^2+4x+4`
`-> 0<4x+4`
`-> -4x<4`
`-> x>-1`
`3.`
`3-\dfrac{4x-1}{18}>\dfrac{x-1}{12}-\dfrac{4-5x}{9}`
`-> 108-2(4x-1)>3(x-1)-4(4-5x)`
`-> 108-8x+2>3x-3-16+20x`
`-> 110-8x>23x-19`
`-> -8x-23x-19-110`
`-> -31x> -129`
`-> x<(129)/(31)`
`4.`
`(2x-3)(x+3)\ge0`
`->`\(\left[ \begin{array}{l}\begin{cases}2x-3\ge0\\x+3\ge0\end{cases}\\\begin{cases}2x-3\le0\\x+3\le0\end{cases}\end{array} \right.\)
`->`\(\left[ \begin{array}{l}\begin{cases}x\ge\dfrac{3}{2}\\x\ge-3\end{cases}\\\begin{cases}x\le\dfrac{3}{2}\\x\le-3\end{cases}\end{array} \right.\)
`->`\(\left[ \begin{array}{l}x\in[\dfrac{3}{2},+∞)\\x\in(-∞,-3]\end{array} \right.\)
`-> x\in∈(-∞,-3]∪[3/2,+∞)`
`5.`
`(3x-1)/4-(3(x-2))/8-1>(5-3x)/2`
`-> (3x-1)/4-(3x-6)/8-1>(5-3x)/2`
`-> 2(3x-1)-(3x-6)-8>4(5-3x)`
`-> 6x-2-3x+6-8>2x-12x`
`-> 3x-4>20-12x`
`-> 3x+12x>20+4`
`-> 15x>24`
`-> x>8/5`