Giải bất phương trình |2x^2 + x -1| – |2x^2 – 5x + 1| >0

Giải bất phương trình
|2x^2 + x -1| – |2x^2 – 5x + 1| >0

0 bình luận về “Giải bất phương trình |2x^2 + x -1| – |2x^2 – 5x + 1| >0”

  1. Đáp án:

    $\dfrac{1}{3} < x < 1$.

    Giải thích các bước giải:

    Bptrinh đã cho tương đương vs

    $|2x^2 + x – 1| > |2x^2 – 5x + 1|$

    Tương đương vs

    $2x^2 + x – 1 > 2x^2 – 5x + 1$ hoặc $2x^2 + x – 1 < -2x^2 + 5x – 1$

    $\Leftrightarrow 6x > 2$ hoặc $4x^2 -4x <0$

    $\Leftrightarrow x > \dfrac{1}{3}$ hoặc $0 < x < 1$

    Vậy $\dfrac{1}{3} < x < 1$.

    Bình luận

Viết một bình luận