Giải bất phương trình: x^2-4x-6>√2x^2-8x+12 2x(x-1)+1>√(x^2-x+1) 08/07/2021 Bởi Remi Giải bất phương trình: x^2-4x-6>√2x^2-8x+12 2x(x-1)+1>√(x^2-x+1)
Giải thích các bước giải: Ta có: \(\begin{array}{l}a,\\DK:\,\,\,2{x^2} – 8x + 12 > 0 \Rightarrow \forall x\\{x^2} – 4x – 6 > \sqrt {2{x^2} – 8x + 12} \\ \Leftrightarrow 2{x^2} – 8x – 12 – 2\sqrt {2{x^2} – 8x + 12} > 0\\ \Leftrightarrow \left( {2{x^2} – 8x + 12} \right) – 2\sqrt {2{x^2} – 8x + 12} – 24 > 0\\ \Leftrightarrow \left( {\sqrt {2{x^2} – 8x + 12} – 6} \right)\left( {\sqrt {2{x^2} – 8x + 12} + 4} \right) > 0\\ \Leftrightarrow \left[ \begin{array}{l}\sqrt {2{x^2} – 8x + 12} > 6\\\sqrt {2{x^2} – 8x + 12} < – 4\left( L \right)\end{array} \right.\\ \Rightarrow \sqrt {2{x^2} – 8x + 12} > 6\\ \Leftrightarrow 2{x^2} – 8x + 12 > 36\\ \Leftrightarrow 2{x^2} – 8x – 24 > 0\\ \Leftrightarrow \left[ \begin{array}{l}x > 6\\x < – 2\end{array} \right.\\b,\\2x\left( {x – 1} \right) + 1 > \sqrt {{x^2} – x + 1} \\ \Leftrightarrow 2\left( {{x^2} – x + 1} \right) – \sqrt {{x^2} – x + 1} – 1 > 0\\ \Leftrightarrow \left( {\sqrt {{x^2} – x + 1} – 1} \right)\left( {2\sqrt {{x^2} – x + 1} + 1} \right) > 0\\ \Leftrightarrow \left[ \begin{array}{l}\sqrt {{x^2} – x + 1} > 1\\\sqrt {{x^2} – x + 1} < – \frac{1}{2}\left( L \right)\end{array} \right.\\ \Leftrightarrow \sqrt {{x^2} – x + 1} > 1\\ \Leftrightarrow {x^2} – x > 0\\ \Leftrightarrow \left[ \begin{array}{l}x > 1\\x < 0\end{array} \right.\end{array}\) Bình luận
Giải thích các bước giải:
Ta có:
\(\begin{array}{l}
a,\\
DK:\,\,\,2{x^2} – 8x + 12 > 0 \Rightarrow \forall x\\
{x^2} – 4x – 6 > \sqrt {2{x^2} – 8x + 12} \\
\Leftrightarrow 2{x^2} – 8x – 12 – 2\sqrt {2{x^2} – 8x + 12} > 0\\
\Leftrightarrow \left( {2{x^2} – 8x + 12} \right) – 2\sqrt {2{x^2} – 8x + 12} – 24 > 0\\
\Leftrightarrow \left( {\sqrt {2{x^2} – 8x + 12} – 6} \right)\left( {\sqrt {2{x^2} – 8x + 12} + 4} \right) > 0\\
\Leftrightarrow \left[ \begin{array}{l}
\sqrt {2{x^2} – 8x + 12} > 6\\
\sqrt {2{x^2} – 8x + 12} < – 4\left( L \right)
\end{array} \right.\\
\Rightarrow \sqrt {2{x^2} – 8x + 12} > 6\\
\Leftrightarrow 2{x^2} – 8x + 12 > 36\\
\Leftrightarrow 2{x^2} – 8x – 24 > 0\\
\Leftrightarrow \left[ \begin{array}{l}
x > 6\\
x < – 2
\end{array} \right.\\
b,\\
2x\left( {x – 1} \right) + 1 > \sqrt {{x^2} – x + 1} \\
\Leftrightarrow 2\left( {{x^2} – x + 1} \right) – \sqrt {{x^2} – x + 1} – 1 > 0\\
\Leftrightarrow \left( {\sqrt {{x^2} – x + 1} – 1} \right)\left( {2\sqrt {{x^2} – x + 1} + 1} \right) > 0\\
\Leftrightarrow \left[ \begin{array}{l}
\sqrt {{x^2} – x + 1} > 1\\
\sqrt {{x^2} – x + 1} < – \frac{1}{2}\left( L \right)
\end{array} \right.\\
\Leftrightarrow \sqrt {{x^2} – x + 1} > 1\\
\Leftrightarrow {x^2} – x > 0\\
\Leftrightarrow \left[ \begin{array}{l}
x > 1\\
x < 0
\end{array} \right.
\end{array}\)