giải bất phương trình a, 7-3x/4 = 5 – 2x/1 b, x-3/5 – 7x+1/2 < x+5/10 c, 3x-2/3 + 2-7x/6 < 7/2 d, 5-3x/4 - 7x/6 ≥ x+2/3 27/09/2021 Bởi Clara giải bất phương trình a, 7-3x/4 = 5 – 2x/1 b, x-3/5 – 7x+1/2 < x+5/10 c, 3x-2/3 + 2-7x/6 < 7/2 d, 5-3x/4 - 7x/6 ≥ x+2/3
Đáp án: d) \(\dfrac{7}{{27}} \ge x\) Giải thích các bước giải: \(\begin{array}{l}a)\dfrac{{7 – 3x}}{4} = \dfrac{{5 – 2x}}{1}\\ \to 7 – 3x = 20 – 8x\\ \to 5x = 13\\ \to x = \dfrac{{13}}{5}\\b)\dfrac{{x – 3}}{5} – \dfrac{{7x + 1}}{2} < \dfrac{{x + 5}}{{10}}\\ \to \dfrac{{2x – 6 – 5\left( {7x + 1} \right) – x – 5}}{{10}} < 0\\ \to 2x – 6 – 35x – 5 – x – 5 < 0\\ \to – 34x < 16\\ \to x > – \dfrac{8}{{17}}\\c)\dfrac{{3x – 2}}{3} + \dfrac{{2 – 7x}}{6} < \dfrac{7}{2}\\ \to \dfrac{{2\left( {3x – 2} \right) + 2 – 7x – 21}}{6} < 0\\ \to 6x – 4 – 7x – 19 < 0\\ \to x > – 23\\d)\dfrac{{5 – 3x}}{4} – \dfrac{{7x}}{6} \ge \dfrac{{x + 2}}{3}\\ \to \dfrac{{3\left( {5 – 3x} \right) – 2.7x – 4\left( {x + 2} \right)}}{{12}} \ge 0\\ \to 15 – 9x – 14x – 4x – 8 \ge 0\\ \to 7 \ge 27x\\ \to \dfrac{7}{{27}} \ge x\end{array}\) Bình luận
Đáp án:
d) \(\dfrac{7}{{27}} \ge x\)
Giải thích các bước giải:
\(\begin{array}{l}
a)\dfrac{{7 – 3x}}{4} = \dfrac{{5 – 2x}}{1}\\
\to 7 – 3x = 20 – 8x\\
\to 5x = 13\\
\to x = \dfrac{{13}}{5}\\
b)\dfrac{{x – 3}}{5} – \dfrac{{7x + 1}}{2} < \dfrac{{x + 5}}{{10}}\\
\to \dfrac{{2x – 6 – 5\left( {7x + 1} \right) – x – 5}}{{10}} < 0\\
\to 2x – 6 – 35x – 5 – x – 5 < 0\\
\to – 34x < 16\\
\to x > – \dfrac{8}{{17}}\\
c)\dfrac{{3x – 2}}{3} + \dfrac{{2 – 7x}}{6} < \dfrac{7}{2}\\
\to \dfrac{{2\left( {3x – 2} \right) + 2 – 7x – 21}}{6} < 0\\
\to 6x – 4 – 7x – 19 < 0\\
\to x > – 23\\
d)\dfrac{{5 – 3x}}{4} – \dfrac{{7x}}{6} \ge \dfrac{{x + 2}}{3}\\
\to \dfrac{{3\left( {5 – 3x} \right) – 2.7x – 4\left( {x + 2} \right)}}{{12}} \ge 0\\
\to 15 – 9x – 14x – 4x – 8 \ge 0\\
\to 7 \ge 27x\\
\to \dfrac{7}{{27}} \ge x
\end{array}\)