giải bất phương trình sau: 2x ² – 3x – 2 / 2x + 3 ≥ 0 MAI E THI MN ƠI ???????? 27/09/2021 Bởi aihong giải bất phương trình sau: 2x ² – 3x – 2 / 2x + 3 ≥ 0 MAI E THI MN ƠI ????????
Đáp án: $x \in \left( { – \dfrac{3}{2}; – \dfrac{1}{2}} \right] \cup \left[ {2; + \infty } \right)$ Giải thích các bước giải: $\begin{array}{l}\dfrac{{2{x^2} – 3x – 2}}{{2x + 3}} \ge 0\\ \Rightarrow \dfrac{{\left( {2x + 1} \right)\left( {x – 2} \right)}}{{\left( {2x + 3} \right)}} \ge 0\\ \Rightarrow \left[ \begin{array}{l}\left\{ \begin{array}{l}\left( {2x + 1} \right)\left( {x – 2} \right) \ge 0\\2x + 3 > 0\end{array} \right.\\\left\{ \begin{array}{l}\left( {2x + 1} \right)\left( {x – 2} \right) \le 0\\2x + 3 < 0\end{array} \right.\end{array} \right.\\ \Rightarrow \left[ \begin{array}{l}\left\{ \begin{array}{l}x \ge 2/x \le – \dfrac{1}{2}\\x > – \dfrac{3}{2}\end{array} \right.\\\left\{ \begin{array}{l} – \dfrac{1}{2} \le x \le 2\\x < – \dfrac{3}{2}\end{array} \right.\end{array} \right.\\ \Rightarrow \left[ \begin{array}{l}x \ge 2\\ – \dfrac{3}{2} < x \le \dfrac{{ – 1}}{2}\end{array} \right.\end{array}$ Vậy $x \in \left( { – \dfrac{3}{2}; – \dfrac{1}{2}} \right] \cup \left[ {2; + \infty } \right)$ Bình luận
Đáp án: $x \in \left( { – \dfrac{3}{2}; – \dfrac{1}{2}} \right] \cup \left[ {2; + \infty } \right)$
Giải thích các bước giải:
$\begin{array}{l}
\dfrac{{2{x^2} – 3x – 2}}{{2x + 3}} \ge 0\\
\Rightarrow \dfrac{{\left( {2x + 1} \right)\left( {x – 2} \right)}}{{\left( {2x + 3} \right)}} \ge 0\\
\Rightarrow \left[ \begin{array}{l}
\left\{ \begin{array}{l}
\left( {2x + 1} \right)\left( {x – 2} \right) \ge 0\\
2x + 3 > 0
\end{array} \right.\\
\left\{ \begin{array}{l}
\left( {2x + 1} \right)\left( {x – 2} \right) \le 0\\
2x + 3 < 0
\end{array} \right.
\end{array} \right.\\
\Rightarrow \left[ \begin{array}{l}
\left\{ \begin{array}{l}
x \ge 2/x \le – \dfrac{1}{2}\\
x > – \dfrac{3}{2}
\end{array} \right.\\
\left\{ \begin{array}{l}
– \dfrac{1}{2} \le x \le 2\\
x < – \dfrac{3}{2}
\end{array} \right.
\end{array} \right.\\
\Rightarrow \left[ \begin{array}{l}
x \ge 2\\
– \dfrac{3}{2} < x \le \dfrac{{ – 1}}{2}
\end{array} \right.
\end{array}$
Vậy $x \in \left( { – \dfrac{3}{2}; – \dfrac{1}{2}} \right] \cup \left[ {2; + \infty } \right)$