giải bpt (x^2+1)/ x^2+3x-10 <0 (x-5) nhân căn -x^2+7x-6 <= 0 03/12/2021 Bởi Parker giải bpt (x^2+1)/ x^2+3x-10 <0 (x-5) nhân căn -x^2+7x-6 <= 0
Đáp án: a. \( – 5 < x < 2\) Giải thích các bước giải: \(\begin{array}{l}a.\frac{{{x^2} + 1}}{{{x^2} + 3x – 10}} < 0\\Do:{x^2} + 1 > 0\forall x \in R\\ \to {x^2} + 3x – 10 < 0\\ \to \left( {x – 2} \right)\left( {x + 5} \right) < 0\\ \to \left[ \begin{array}{l}\left\{ \begin{array}{l}x – 2 > 0\\x + 5 < 0\end{array} \right.\\\left\{ \begin{array}{l}x – 2 < 0\\x + 5 > 0\end{array} \right.\end{array} \right. \to \left[ \begin{array}{l}(loai)\\ – 5 < x < 2\end{array} \right.\\b.\left( {x – 5} \right)\left( {\sqrt { – {x^2} + 7x – 6} } \right) \le 0\\ \to \left\{ \begin{array}{l} – {x^2} + 7x – 6 \ge 0\\x – 5 \le 0\end{array} \right.\\ \to \left\{ \begin{array}{l}\left( {x – 6} \right)\left( {x – 1} \right) \le 0\\x \le 5\end{array} \right.\\ \to \left\{ \begin{array}{l}x \in \left[ {1;6} \right]\\x \le 5\end{array} \right.\\KL:x \in \left[ {1;5} \right]\end{array}\) Bình luận
Đáp án:
a. \( – 5 < x < 2\)
Giải thích các bước giải:
\(\begin{array}{l}
a.\frac{{{x^2} + 1}}{{{x^2} + 3x – 10}} < 0\\
Do:{x^2} + 1 > 0\forall x \in R\\
\to {x^2} + 3x – 10 < 0\\
\to \left( {x – 2} \right)\left( {x + 5} \right) < 0\\
\to \left[ \begin{array}{l}
\left\{ \begin{array}{l}
x – 2 > 0\\
x + 5 < 0
\end{array} \right.\\
\left\{ \begin{array}{l}
x – 2 < 0\\
x + 5 > 0
\end{array} \right.
\end{array} \right. \to \left[ \begin{array}{l}
(loai)\\
– 5 < x < 2
\end{array} \right.\\
b.\left( {x – 5} \right)\left( {\sqrt { – {x^2} + 7x – 6} } \right) \le 0\\
\to \left\{ \begin{array}{l}
– {x^2} + 7x – 6 \ge 0\\
x – 5 \le 0
\end{array} \right.\\
\to \left\{ \begin{array}{l}
\left( {x – 6} \right)\left( {x – 1} \right) \le 0\\
x \le 5
\end{array} \right.\\
\to \left\{ \begin{array}{l}
x \in \left[ {1;6} \right]\\
x \le 5
\end{array} \right.\\
KL:x \in \left[ {1;5} \right]
\end{array}\)