Giải các phương trình: a, 1/x+1 -4/x^2-x+1=2x^2+1/x^3+1 b, 3x+1/x+1 -2x-5/x-3=1 -4/(x+1)(x-3)

Giải các phương trình:
a, 1/x+1 -4/x^2-x+1=2x^2+1/x^3+1
b, 3x+1/x+1 -2x-5/x-3=1 -4/(x+1)(x-3)

0 bình luận về “Giải các phương trình: a, 1/x+1 -4/x^2-x+1=2x^2+1/x^3+1 b, 3x+1/x+1 -2x-5/x-3=1 -4/(x+1)(x-3)”

  1. `a) 1/(x+1) -4/(x^2-x+1)=(2x^2+1)/(x^3+1) `

    `<=> 1/(x+1) -4/(x^2-x+1)-(2x^2+1)/(x^3+1)=0 `

    `<=> (x^2-x+1)/((x+1)(x^2-x+1)) -(4(x+1))/((x^2-x+1)(x+1))-(2x^2+1)/((x+1)(x^2-x+1))=0 `

    `<=> ((x^2-x+1)-(4x+4)-(2x^2+1))/((x+1)(x^2-x+1))=0 `

    `<=> (x^2-x+1-4x-4-2x^2-1)/((x+1)(x^2-x+1))=0 `

    `<=> (-x^2-5x-4)/((x+1)(x^2-x+1))=0 `

    $⇔\begin{cases}-x^2-5x-4=0\\(x+1)(x^2-x+1)\ne0\end{cases}$

    $⇔\begin{cases}-(x^2+5x+4)=0\\x\ne-1\end{cases}$

    $⇔\begin{cases}x^2+x+4x+4=0\\x\ne-1\end{cases}$

    $⇔\begin{cases}x(x+1)+4(x+1)=0\\x\ne-1\end{cases}$

    $⇔\begin{cases}(x+1)(x+4)=0\\x\ne-1\end{cases}$

    $⇔\begin{cases}\left[ \begin{array}{l}x=-1(KTM)\\x=-4\end{array} \right.\\x\ne-1\end{cases}$\(\)

    `to x=-4`

    `b)( 3x+1)/(x+1) -(2x-5)/(x-3)=1 -4/((x+1)(x-3))`

    `<=>( 3x+1)/(x+1) -(2x-5)/(x-3)=((x+1)(x-3) -4)/((x+1)(x-3))`

    `<=>( 3x+1)/(x+1) -(2x-5)/(x-3)=(x^2+2x-3 -4)/((x+1)(x-3))`

    `<=>( 3x+1)/(x+1) -(2x-5)/(x-3)=(x^2+2x-7)/((x+1)(x-3))`

    `<=>( 3x+1)/(x+1) -(2x-5)/(x-3)-(x^2+2x-7)/((x+1)(x-3))=0`

    `<=>( (3x+1)(x-3))/((x+1)(x-3)) -((2x-5)(x+1))/((x-3)(x+1))-(x^2+2x-7)/((x+1)(x-3))=0`

    `<=>( 3x^2-8x-3-(2x^2-3x-5)-(x^2-2x+7))/((x+1)(x-3))=0`

    `<=>( 3x^2-8x-3-2x^2+3x+5-x^2+2x-7)/((x+1)(x-3))=0`

    `<=>(-3x+5)/((x+1)(x-3))=0`

    `<=>`$\begin{cases}-3x+5=0\\(x+1)(x-3)\ne0\end{cases}$

    `<=>`$\begin{cases}x=\cfrac{5}{3}\\\left[ \begin{array}{l}x\ne-1\\x\ne3\end{array} \right.\end{cases}$

    Bình luận

Viết một bình luận