Giải các phương trình: b) (2x+1) ²-2x-1=2 c) (x ² -3x) ² + 5(x ²-3x)+6=0 d) (x ² -x-1)(x ²-x)-2=0 17/10/2021 Bởi Arianna Giải các phương trình: b) (2x+1) ²-2x-1=2 c) (x ² -3x) ² + 5(x ²-3x)+6=0 d) (x ² -x-1)(x ²-x)-2=0
Giải thích các bước giải: a,a,(2x+1) ²-2x-1=2 ⇔ (2x+1).(2x+1)-(2x+1)=2 ⇔ (2x+1)(2x+1-1)=2 ⇔ 2x(2x+1)=2 ⇔ x(2x+1)=0 ⇔ \(\left[ \begin{array}{l}x=0\\2x+1=0\end{array} \right.\) ⇔ \(\left[ \begin{array}{l}x=0\\2x=-1\end{array} \right.\) ⇔ \(\left[ \begin{array}{l}x=0\\x=\frac{-1}{2} \end{array} \right.\) Vậy x∈{0;$\frac{-1}{2}$} b, (x²-3x)²+5(x²-3x)+6=0 ⇔[(x²-3x)²+5(x²-3x)+$\frac{25}{4}$]²-$\frac{1}{4}$=0 ⇔ [(x²-3x)+$\frac{5}{2}$]²-$\frac{1}{4}$=0 ⇔ (x²-3x+$\frac{5}{2}$-$\frac{1}{2}$)(x²-3x+$\frac{5}{2}$+$\frac{1}{2}$)=0 ⇔ \(\left[ \begin{array}{l}x²-3x+2=0\\x²-3x+3=0\end{array} \right.\) ⇔\(\left[ \begin{array}{l}(x-2)(x-1)=0\\(x²-3x+\frac{9}{4})+\frac{3}{4}=0 (ktm)\end{array} \right.\) ⇔ \(\left[ \begin{array}{l}x-2=0\\x-1=0\end{array} \right.\) ⇔ \(\left[ \begin{array}{l}x=2\\x=1\end{array} \right.\) Vậy x∈{2;1} c, (x ² -x-1)(x ²-x)-2=0 ⇔ x^4-x³-x³+x²-x²+x-2=0 ⇔ x^4-2x³+x-2 ⇔ x³(x-2)+(x-2)=0 ⇔ (x³+1)(x-2)=0 ⇔\(\left[ \begin{array}{l}x³+1=0\\x-2=0\end{array} \right.\) ⇔\(\left[ \begin{array}{l}x=2\\x=-1\end{array} \right.\) Vậy x∈{2;-1} Bình luận
Giải thích các bước giải: `b) (2x+1)^2-2x-1=2` ⇒`4x^2+4x+1-2x-1=2` ⇒`2x^2+x=1` ⇒`(x+1)(2x-1)=0` ⇒`x=-1` hoặc `x=1/2` `c) (x^2-3x)^2+5(x^2-3x)+6=0` Đặt `(x^2-3x)=t` ⇒`t^2+5t+6=0` ⇒`t=-3` hoặc `t=-2` ⇒\(\left[ \begin{array}{l}x^2-3=-3\\x^2-3=-2\end{array} \right.\) ⇒\(\left[ \begin{array}{l}x=1\\x=2\end{array} \right.\) `d) (x^2 -x-1)(x^2-x)-2=0` ⇒`x^4-x^3-x^3+x^2-x^2+x-2=0` ⇒`(x-2)(x^3+1)=0` ⇒\(\left[ \begin{array}{l}x-2=0\\x^3-1=0\end{array} \right.\) ⇒\(\left[ \begin{array}{l}x=2\\x=-1\end{array} \right.\) Bình luận
Giải thích các bước giải:
a,a,(2x+1) ²-2x-1=2
⇔ (2x+1).(2x+1)-(2x+1)=2
⇔ (2x+1)(2x+1-1)=2
⇔ 2x(2x+1)=2
⇔ x(2x+1)=0
⇔ \(\left[ \begin{array}{l}x=0\\2x+1=0\end{array} \right.\)
⇔ \(\left[ \begin{array}{l}x=0\\2x=-1\end{array} \right.\)
⇔ \(\left[ \begin{array}{l}x=0\\x=\frac{-1}{2} \end{array} \right.\)
Vậy x∈{0;$\frac{-1}{2}$}
b, (x²-3x)²+5(x²-3x)+6=0
⇔[(x²-3x)²+5(x²-3x)+$\frac{25}{4}$]²-$\frac{1}{4}$=0
⇔ [(x²-3x)+$\frac{5}{2}$]²-$\frac{1}{4}$=0
⇔ (x²-3x+$\frac{5}{2}$-$\frac{1}{2}$)(x²-3x+$\frac{5}{2}$+$\frac{1}{2}$)=0
⇔ \(\left[ \begin{array}{l}x²-3x+2=0\\x²-3x+3=0\end{array} \right.\)
⇔\(\left[ \begin{array}{l}(x-2)(x-1)=0\\(x²-3x+\frac{9}{4})+\frac{3}{4}=0 (ktm)\end{array} \right.\)
⇔ \(\left[ \begin{array}{l}x-2=0\\x-1=0\end{array} \right.\)
⇔ \(\left[ \begin{array}{l}x=2\\x=1\end{array} \right.\)
Vậy x∈{2;1}
c, (x ² -x-1)(x ²-x)-2=0
⇔ x^4-x³-x³+x²-x²+x-2=0
⇔ x^4-2x³+x-2
⇔ x³(x-2)+(x-2)=0
⇔ (x³+1)(x-2)=0
⇔\(\left[ \begin{array}{l}x³+1=0\\x-2=0\end{array} \right.\)
⇔\(\left[ \begin{array}{l}x=2\\x=-1\end{array} \right.\)
Vậy x∈{2;-1}
Giải thích các bước giải:
`b) (2x+1)^2-2x-1=2`
⇒`4x^2+4x+1-2x-1=2`
⇒`2x^2+x=1`
⇒`(x+1)(2x-1)=0`
⇒`x=-1` hoặc `x=1/2`
`c) (x^2-3x)^2+5(x^2-3x)+6=0`
Đặt `(x^2-3x)=t`
⇒`t^2+5t+6=0`
⇒`t=-3` hoặc `t=-2`
⇒\(\left[ \begin{array}{l}x^2-3=-3\\x^2-3=-2\end{array} \right.\)
⇒\(\left[ \begin{array}{l}x=1\\x=2\end{array} \right.\)
`d) (x^2 -x-1)(x^2-x)-2=0`
⇒`x^4-x^3-x^3+x^2-x^2+x-2=0`
⇒`(x-2)(x^3+1)=0`
⇒\(\left[ \begin{array}{l}x-2=0\\x^3-1=0\end{array} \right.\)
⇒\(\left[ \begin{array}{l}x=2\\x=-1\end{array} \right.\)