Giải các phương trình lượng giác sau: a.sin^2 x+cos^2 x=1 b. sin^2 3x+sin^2 x=1 c. 4sinx × cosx +1=0 09/07/2021 Bởi Aubrey Giải các phương trình lượng giác sau: a.sin^2 x+cos^2 x=1 b. sin^2 3x+sin^2 x=1 c. 4sinx × cosx +1=0
Đáp án: c) \(\left[ \begin{array}{l}x = – \dfrac{\pi }{{12}} + k\pi \\x = \dfrac{{7\pi }}{{12}} + k\pi \end{array} \right.\) Giải thích các bước giải: \(\begin{array}{l}a){\sin ^2}x + {\cos ^2}x = 1\left( {ld} \right)\forall x\\b){\sin ^2}3x + {\sin ^2}x = 1\\ \to {\left( {3\sin x – 4{{\sin }^3}x} \right)^2} + {\sin ^2}x = 1\\ \to 9{\sin ^2}x – 24{\sin ^4}x + 16{\sin ^6}x + {\sin ^2}x = 1\\ \to 16{\sin ^6}x – 24{\sin ^4} + 10{\sin ^2}x = 1\\Đặt:{\sin ^2}x = t\left( {t > 0} \right)\\Pt \to 16{t^3} – 24{t^2} + 10t – 1 = 0\\ \to \left[ \begin{array}{l}t = \dfrac{{2 – \sqrt 2 }}{4}\\t = \dfrac{{2 + \sqrt 2 }}{4}\\t = \dfrac{1}{2}\end{array} \right.\\ \to \left[ \begin{array}{l}{\sin ^2}x = \dfrac{{2 – \sqrt 2 }}{4}\\{\sin ^2}x = \dfrac{{2 + \sqrt 2 }}{4}\\{\sin ^2}x = \dfrac{1}{2}\end{array} \right.\\ \to \left[ \begin{array}{l}\sin x = \pm \sqrt {\dfrac{{2 – \sqrt 2 }}{4}} \\\sin x = \pm \sqrt {\dfrac{{2 + \sqrt 2 }}{4}} \\\sin x = \pm \sqrt {\dfrac{1}{2}} \end{array} \right.\\ \to \left[ \begin{array}{l}x = \arcsin \left( { \pm \sqrt {\dfrac{{2 – \sqrt 2 }}{4}} } \right)\\x = \arcsin \left( { \pm \sqrt {\dfrac{{2 + \sqrt 2 }}{4}} } \right)\\x = \arcsin \left( { \pm \sqrt {\dfrac{1}{2}} } \right)\end{array} \right.\\c)4\sin x.\cos x + 1 = 0\\ \to 2\sin 2x + 1 = 0\\ \to \sin 2x = – \dfrac{1}{2}\\ \to \left[ \begin{array}{l}2x = – \dfrac{\pi }{6} + k2\pi \\2x = \dfrac{{7\pi }}{6} + k2\pi \end{array} \right.\\ \to \left[ \begin{array}{l}x = – \dfrac{\pi }{{12}} + k\pi \\x = \dfrac{{7\pi }}{{12}} + k\pi \end{array} \right.\left( {k \in Z} \right)\end{array}\) Bình luận
Đáp án:
c) \(\left[ \begin{array}{l}
x = – \dfrac{\pi }{{12}} + k\pi \\
x = \dfrac{{7\pi }}{{12}} + k\pi
\end{array} \right.\)
Giải thích các bước giải:
\(\begin{array}{l}
a){\sin ^2}x + {\cos ^2}x = 1\left( {ld} \right)\forall x\\
b){\sin ^2}3x + {\sin ^2}x = 1\\
\to {\left( {3\sin x – 4{{\sin }^3}x} \right)^2} + {\sin ^2}x = 1\\
\to 9{\sin ^2}x – 24{\sin ^4}x + 16{\sin ^6}x + {\sin ^2}x = 1\\
\to 16{\sin ^6}x – 24{\sin ^4} + 10{\sin ^2}x = 1\\
Đặt:{\sin ^2}x = t\left( {t > 0} \right)\\
Pt \to 16{t^3} – 24{t^2} + 10t – 1 = 0\\
\to \left[ \begin{array}{l}
t = \dfrac{{2 – \sqrt 2 }}{4}\\
t = \dfrac{{2 + \sqrt 2 }}{4}\\
t = \dfrac{1}{2}
\end{array} \right.\\
\to \left[ \begin{array}{l}
{\sin ^2}x = \dfrac{{2 – \sqrt 2 }}{4}\\
{\sin ^2}x = \dfrac{{2 + \sqrt 2 }}{4}\\
{\sin ^2}x = \dfrac{1}{2}
\end{array} \right.\\
\to \left[ \begin{array}{l}
\sin x = \pm \sqrt {\dfrac{{2 – \sqrt 2 }}{4}} \\
\sin x = \pm \sqrt {\dfrac{{2 + \sqrt 2 }}{4}} \\
\sin x = \pm \sqrt {\dfrac{1}{2}}
\end{array} \right.\\
\to \left[ \begin{array}{l}
x = \arcsin \left( { \pm \sqrt {\dfrac{{2 – \sqrt 2 }}{4}} } \right)\\
x = \arcsin \left( { \pm \sqrt {\dfrac{{2 + \sqrt 2 }}{4}} } \right)\\
x = \arcsin \left( { \pm \sqrt {\dfrac{1}{2}} } \right)
\end{array} \right.\\
c)4\sin x.\cos x + 1 = 0\\
\to 2\sin 2x + 1 = 0\\
\to \sin 2x = – \dfrac{1}{2}\\
\to \left[ \begin{array}{l}
2x = – \dfrac{\pi }{6} + k2\pi \\
2x = \dfrac{{7\pi }}{6} + k2\pi
\end{array} \right.\\
\to \left[ \begin{array}{l}
x = – \dfrac{\pi }{{12}} + k\pi \\
x = \dfrac{{7\pi }}{{12}} + k\pi
\end{array} \right.\left( {k \in Z} \right)
\end{array}\)