Giải các phương trình sau : 1.sin(2x – 1)= -sinx 2.Cot( -x +2π/9)= cot(-3x + π/2) 3.Sin(- x + π/3)= sin(x + 3π/8) 27/07/2021 Bởi Melody Giải các phương trình sau : 1.sin(2x – 1)= -sinx 2.Cot( -x +2π/9)= cot(-3x + π/2) 3.Sin(- x + π/3)= sin(x + 3π/8)
Đáp án: Giải thích các bước giải: 1. `sin(2x – 1)= -sinx` `⇔ sin(2x-1)=sin(-x)` `⇔` \(\left[ \begin{array}{l}2x-1=-x+k2\pi\ (k \in \mathbb{Z})\\2x-1=\pi+x+k2\pi\ (k \in \mathbb{Z})\end{array} \right.\) `⇔` \(\left[ \begin{array}{l}x=\dfrac{1}{3}+\dfrac{k2\pi}{3}\ (k \in \mathbb{Z})\\x=1+\pi+k2\pi\ (k \in \mathbb{Z})\end{array} \right.\) 2. `Cot( -x +(2π)/9)= cot(-3x + π/2)` `⇔ -x+\frac{2\pi}{9}=-3x+\frac{\pi}{2}+k\pi\ (k \in \mathbb{Z})` `⇔ 2x=\frac{5}{18}\pi+k\pi\ (k \in \mathbb{Z})` `⇔ x=\frac{5}{36}\pi+\frac{k\pi}{2}\ (k \in \mathbb{Z})` 3. `Sin(- x + π/3)= sin(x + (3π)/8)` `⇔` \(\left[ \begin{array}{l}-x+\dfrac{\pi}{3}=x+\dfrac{3\pi}{8}+k2\pi\ (k \in \mathbb{Z})\\-x+\dfrac{\pi}{3}=\pi-x-\dfrac{3\pi}{8}+k2\pi\ (k \in \mathbb{Z})\end{array} \right.\) `⇔` \(\left[ \begin{array}{l}x=-\dfrac{1}{48}\pi-k\pi\ (k \in \mathbb{Z})\\0x=\dfrac{7}{24}\pi+k2\pi\ (vô\ lí)\end{array} \right.\) Bình luận
Đáp án:
Giải thích các bước giải:
1. `sin(2x – 1)= -sinx`
`⇔ sin(2x-1)=sin(-x)`
`⇔` \(\left[ \begin{array}{l}2x-1=-x+k2\pi\ (k \in \mathbb{Z})\\2x-1=\pi+x+k2\pi\ (k \in \mathbb{Z})\end{array} \right.\)
`⇔` \(\left[ \begin{array}{l}x=\dfrac{1}{3}+\dfrac{k2\pi}{3}\ (k \in \mathbb{Z})\\x=1+\pi+k2\pi\ (k \in \mathbb{Z})\end{array} \right.\)
2. `Cot( -x +(2π)/9)= cot(-3x + π/2)`
`⇔ -x+\frac{2\pi}{9}=-3x+\frac{\pi}{2}+k\pi\ (k \in \mathbb{Z})`
`⇔ 2x=\frac{5}{18}\pi+k\pi\ (k \in \mathbb{Z})`
`⇔ x=\frac{5}{36}\pi+\frac{k\pi}{2}\ (k \in \mathbb{Z})`
3. `Sin(- x + π/3)= sin(x + (3π)/8)`
`⇔` \(\left[ \begin{array}{l}-x+\dfrac{\pi}{3}=x+\dfrac{3\pi}{8}+k2\pi\ (k \in \mathbb{Z})\\-x+\dfrac{\pi}{3}=\pi-x-\dfrac{3\pi}{8}+k2\pi\ (k \in \mathbb{Z})\end{array} \right.\)
`⇔` \(\left[ \begin{array}{l}x=-\dfrac{1}{48}\pi-k\pi\ (k \in \mathbb{Z})\\0x=\dfrac{7}{24}\pi+k2\pi\ (vô\ lí)\end{array} \right.\)