giải các phương trình sau: a) (2x+1)(x-1)=0 b) (3x-1)(2x-3)(x+5)=0 c) 3x-15=2x(x-5) d) x^2-x=0 e) x^2-2x=0 f) x^2-3x=0 g) (x+1)(x+2)=(2-x)(x+2)

giải các phương trình sau:
a) (2x+1)(x-1)=0
b) (3x-1)(2x-3)(x+5)=0
c) 3x-15=2x(x-5)
d) x^2-x=0
e) x^2-2x=0
f) x^2-3x=0
g) (x+1)(x+2)=(2-x)(x+2)

0 bình luận về “giải các phương trình sau: a) (2x+1)(x-1)=0 b) (3x-1)(2x-3)(x+5)=0 c) 3x-15=2x(x-5) d) x^2-x=0 e) x^2-2x=0 f) x^2-3x=0 g) (x+1)(x+2)=(2-x)(x+2)”

  1. a) (2x+1)(x-1)=0

    ⇔ \(\left[ \begin{array}{l}2x+1=0\\x-1=0\end{array} \right.\) 

    ⇔ \(\left[ \begin{array}{l}x=\frac{-1}{2} \\x=1\end{array} \right.\)

    Vậy nghiệm của phương trình là x= $\frac{-1}{2}$ hoặc x=1

    b) (3x-1)(2x-3)(x+5)=0

    ⇔ 3x-1=0 hoặc 2x-3=0 hoặc x+5=0

    ⇔ x=1/3 hoặc x=3/2 hoặc x=-5

    Vậy nghiệm của phương trình là x=1/3 hoặc x=3/2 hoặc x=-5

    Bình luận
  2. a) $(2x+1)(x-1)=0$

    \(⇔\left[ \begin{array}{l}2x+1=0\\x-1=0\end{array} \right.\)

    \(⇔\left[ \begin{array}{l}x=\dfrac{-1}{2}\\x=1\end{array} \right.\)

    Vậy $S=\bigg\{\dfrac{-1}{2};1\bigg\}$

    b) $(3x-1)(2x-3)(x+5)=0$

    \(⇔\left[ \begin{array}{l}3x-1=0\\2x-3=0\\x+5=0\end{array} \right.\)

    \(⇔\left[ \begin{array}{l}x=\dfrac{1}{3}\\x=\dfrac{3}{2}\\x=-5\end{array} \right.\)

    Vậy $S=\bigg\{\dfrac{1}{3};\dfrac{3}{2};5\bigg\}$

    c) $3x-15=2x(x-5)$

    $⇔3(x-5)-2x(x-5)=0$

    $⇔(x-5)(3-2x)=0$

    \(⇔\left[ \begin{array}{l}x-5=0\\3-2x=0\end{array} \right.\)

    \(⇔\left[ \begin{array}{l}x=5\\x=\dfrac{3}{2}\end{array} \right.\)

    Vậy $S=\bigg\{5;\dfrac{3}{2}\bigg\}$

    d) $x^2-x=0$

    $⇔x(x-1)=0$

    \(⇔\left[ \begin{array}{l}x=0\\x-1=0\end{array} \right.\)

    \(⇔\left[ \begin{array}{l}x=0\\x=1\end{array} \right.\)

    Vậy $S=\{0;1\}$

    e) $x^2-2x=0$

    $⇔x(x-2)=0$

    \(⇔\left[ \begin{array}{l}x=0\\x-2=0\end{array} \right.\)

    \(⇔\left[ \begin{array}{l}x=0\\x=2\end{array} \right.\)

    Vậy $S=\{0;2\}$

    f) $x^2-3x=0$

    $⇔x(x-3)=0$

    \(⇔\left[ \begin{array}{l}x=0\\x-3=0\end{array} \right.\)

    \(⇔\left[ \begin{array}{l}x=0\\x=3\end{array} \right.\)

    Vậy $S=\{0;3\}$

    g) $(x+1)(x+2)=(2-x)(x+2)$

    $⇔(x+1)(x+2)-(2-x)(x+2)=0$

    $⇔(x+2)(x+1-2+x)=0$

    $⇔(x+2)(2x-1)=0$

    \(⇔\left[ \begin{array}{l}x+2=0\\2x-1=0\end{array} \right.\)

    \(⇔\left[ \begin{array}{l}x=-2\\x=\dfrac{1}{2}\end{array} \right.\)

    Vậy $S=\bigg\{-2;\dfrac{1}{2}\bigg\}$

    Bình luận

Viết một bình luận