Giải các phương trình sau: a) x² – 5x + 6 = 0 b) 2x³ + 6x² = x² + 3x c) (3x – 1) (x² + 2) = (3x – 1) (7x – 10) 07/11/2021 Bởi Josephine Giải các phương trình sau: a) x² – 5x + 6 = 0 b) 2x³ + 6x² = x² + 3x c) (3x – 1) (x² + 2) = (3x – 1) (7x – 10)
a, $x^2-5x+6=0$ $⇔x^2-2x-3x+6=0$ $⇔x(x-2)-3(x-2)=0$ $⇔(x-2)(x-3)=0$ \(⇔\left[ \begin{array}{l}x-2=0\\x-3=0\end{array} \right.\) \(⇔\left[ \begin{array}{l}x=2\\x=3\end{array} \right.\) Vậy $S=\{2;3\}$ b, $2x^3+6x^2=x^2+3x$ $⇔2x^3+5x^2-3x=0$ $⇔x(2x^2+5x-3)=0$ $⇔x(2x^2+6x-x-3)=0$ $⇔x(x+3)(2x-1)=0$ \(⇔\left[ \begin{array}{l}x=0\\x+3=0\\2x-1=0\end{array} \right.\) \(⇔\left[ \begin{array}{l}x=0\\x=-3\\x=\dfrac{1}{2}\end{array} \right.\) Vậy $S=\bigg\{-3;0;\dfrac{1}{2}\bigg\}$ c, $(3x-1)(x^2+2)=(3x-1)(7x-10)$ $⇔(3x-1)(x^2+2)-(3x-1)(7x-10)=0$ $⇔(3x-1)(x^2+2-7x+10)=0$ $⇔(3x-1)(x^2-7x+12)=0$ $⇔(3x-1)(x^2-3x-4x+12=0)=0$ $⇔(3x-1)(x-3)(x-4)=0$ \(⇔\left[ \begin{array}{l}3x-1=0\\x-3=0\\x-4=0\end{array} \right.\) \(⇔\left[ \begin{array}{l}x=\dfrac{1}{3}\\x=3\\x=4\end{array} \right.\) Vậy $S=\bigg\{\dfrac{1}{3};3;4\bigg\}$ Bình luận
$a) x^2 -5x +6=0$ $\to x^2 -2x -3x+6=0$ $\to x(x-2)-3(x-2)=0$ $\to (x-2)(x-3)=0$ Nếu: $x-2=0 \to x=2$ $x-3=0 \to x=3$ Vậy $S={2;3}$ $b)2x^3+6x^2=x^2+3x$ $\to 2x^2(x+3)=x(x+3)$ $\to 2x^2(x+3)-x(x+3)=0$ $\to (x+3)(2x^2-x)=0$ $\to x(2x-1)(x+3)=0$ Nếu: $x=0 \to x=0$ $2x-1=0 \to x=\dfrac{1}{2}$ $x+3=0 \to x=-3$ Vậy $S={-3;0;\dfrac{1}{2}}$ $c)(3x-1)(x^2+2)=(3x-1)(7x-10)$ $\to (3x-1)(x^2+2)-(3x-1)(7x-10)=0$ $\to (3x-1)(x^2+2-7x+10)=0$ $\to (3x-1)(x^2-7x+12)=0$ Nếu : $x^2-7x+12=0$ $\to x^2 -3x-4x+12=0$ $\to x(x-3)-4(x-3)=0$ $\to (x-3)(x-4)=0$ $\to x=3;x=4$ $3x-1=0$ $\to x=\dfrac{1}{3}$ Vậy $S={\dfrac{1}{3};3;4}$ Bình luận
a, $x^2-5x+6=0$
$⇔x^2-2x-3x+6=0$
$⇔x(x-2)-3(x-2)=0$
$⇔(x-2)(x-3)=0$
\(⇔\left[ \begin{array}{l}x-2=0\\x-3=0\end{array} \right.\)
\(⇔\left[ \begin{array}{l}x=2\\x=3\end{array} \right.\)
Vậy $S=\{2;3\}$
b, $2x^3+6x^2=x^2+3x$
$⇔2x^3+5x^2-3x=0$
$⇔x(2x^2+5x-3)=0$
$⇔x(2x^2+6x-x-3)=0$
$⇔x(x+3)(2x-1)=0$
\(⇔\left[ \begin{array}{l}x=0\\x+3=0\\2x-1=0\end{array} \right.\)
\(⇔\left[ \begin{array}{l}x=0\\x=-3\\x=\dfrac{1}{2}\end{array} \right.\)
Vậy $S=\bigg\{-3;0;\dfrac{1}{2}\bigg\}$
c, $(3x-1)(x^2+2)=(3x-1)(7x-10)$
$⇔(3x-1)(x^2+2)-(3x-1)(7x-10)=0$
$⇔(3x-1)(x^2+2-7x+10)=0$
$⇔(3x-1)(x^2-7x+12)=0$
$⇔(3x-1)(x^2-3x-4x+12=0)=0$
$⇔(3x-1)(x-3)(x-4)=0$
\(⇔\left[ \begin{array}{l}3x-1=0\\x-3=0\\x-4=0\end{array} \right.\)
\(⇔\left[ \begin{array}{l}x=\dfrac{1}{3}\\x=3\\x=4\end{array} \right.\)
Vậy $S=\bigg\{\dfrac{1}{3};3;4\bigg\}$
$a) x^2 -5x +6=0$
$\to x^2 -2x -3x+6=0$
$\to x(x-2)-3(x-2)=0$
$\to (x-2)(x-3)=0$
Nếu:
$x-2=0 \to x=2$
$x-3=0 \to x=3$
Vậy $S={2;3}$
$b)2x^3+6x^2=x^2+3x$
$\to 2x^2(x+3)=x(x+3)$
$\to 2x^2(x+3)-x(x+3)=0$
$\to (x+3)(2x^2-x)=0$
$\to x(2x-1)(x+3)=0$
Nếu:
$x=0 \to x=0$
$2x-1=0 \to x=\dfrac{1}{2}$
$x+3=0 \to x=-3$
Vậy $S={-3;0;\dfrac{1}{2}}$
$c)(3x-1)(x^2+2)=(3x-1)(7x-10)$
$\to (3x-1)(x^2+2)-(3x-1)(7x-10)=0$
$\to (3x-1)(x^2+2-7x+10)=0$
$\to (3x-1)(x^2-7x+12)=0$
Nếu :
$x^2-7x+12=0$
$\to x^2 -3x-4x+12=0$
$\to x(x-3)-4(x-3)=0$
$\to (x-3)(x-4)=0$
$\to x=3;x=4$
$3x-1=0$
$\to x=\dfrac{1}{3}$
Vậy $S={\dfrac{1}{3};3;4}$